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Abstract 

Three designs for a Lighter Than Air (LTA) structure that achieve positive 

buoyancy using a vacuum in place of a lifting gas were proposed and evaluated. Before 

the first human flight it was predicted that LTA flight was possible through the use of a 

light weight structure maintaining an internal vacuum. Since that time LTA flight has 

been used to accomplish various missions through the use of lifting gases. This study was 

conducted in response to an anticipated shortage of helium, the danger of hydrogen, and 

the possibility of using LTA vehicles as a means of passenger or cargo transportation. 

The improvements required of traditional LTA vehicles to become viable methods of 

transportation were examined and found to be buoyancy control, ground handling, and 

efficiency. Efficiency was evaluated using von Karman efficiency which enabled 

comparison between vehicles of different types and missions based on velocity, payload 

and power required. Von Karman efficiency was also used to compare theoretical LTA 

vehicles of constant size over a range of engine sizes. Vacuum LTA structures were 

evaluated based on their ratio of structure weight to the weight of displaced air and 

termed Weight/Buoyant Force (W/B) where a W/B<1 corresponds to positive buoyancy.   

Two methods of geometrically stiffening a sphere were investigated. A thin 

shelled sphere stiffened with an isogrid of blade type stiffeners using Ultra High Modulus 

(UHM) carbon epoxy was predicted to give a W/B= 0.81 which would enable LTA flight. 

The same design with a beryllium skin and UHM carbon epoxy stiffeners was predicted 

to have a W/B=0.79. A geodesic sphere composed of a frame of cylindrical, UHM, 

carbon epoxy, pultruded rods with a thin membrane stretched over it was evaluated using 



 

v 
 

Finite Element Analysis with the frame modeled as clamped, cylindrical beam elements. 

A W/B=0.57 was calculated for the frame. The skin was predicted to add approximately 

0.37 to the W/B if Zylon was used to reinforce a Mylar membrane, which would result in 

a structure with an overall W/B=0.94. If a material as strong as graphene were used for 

the skin the skin would have a W/B=0.001, resulting in an overall W/B=0.57. These 

structures were optimized using a non-linear programming optimization routine in 

Matlab.  

A unique LTA vehicle concept composed of twin counter-rotating cylinders that 

made use of a virtual elliptical body to reduce drag and maintain structural integrity with 

a vacuum was also investigated and found to be infeasible. 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 
 

 

 

 

 

 

 

 

To my beautiful wife and adorable son, who’s love and support made it possible 

for me to lock myself in my office for days at a time to complete research, course work, 

and professional work, and still have a family when I emerged. To God, for all the 

miraculous coincidences that make life fall perfectly into place. 

 



 

vii 
 

Acknowledgments 

Thank you Dr. Anthony Palazotto, for the long hours you spent grading and 

prepping classes, reviewing my research and helping me put it together in a way that 

made sense. I suspect you remember more than you forgot, and that you forgot more than 

most of us will ever know about engineering.  Thank you for listening to my wild ideas 

and for encouraging me to research them. Thank you LtCol Jeremy Agte for greatly 

contributing to my understanding of engineering and for giving me the tools to complete 

this project. Thank you Matt Johnson for being the creative and financial spark behind 

this research, who refused to listen to those of us that advised a more conventional 

approach, and for daring to explore the regions outside of the proverbial box. Thank you 

Dr. David Stargel, for taking an interest in our research and providing much needed 

funding. For the professionals at AFRL and NASA; in particular George Studor, thank 

you for your time, interest, and support for our project. 

 

 
       Trent T. Metlen 



 

viii 
 

Table of Contents 

Page 

Abstract .............................................................................................................................. iv 

Acknowledgments............................................................................................................. vii 

Table of Contents ............................................................................................................. viii 

List of Figures ......................................................................................................................x 

List of Tables ................................................................................................................... xiii 

Nomenclature ................................................................................................................... xiv 

I.  Introduction .....................................................................................................................1 

1.1 Motivation .................................................................................................................1 
1.2 Background ...............................................................................................................2 
1.3 Research Objective....................................................................................................4 
1.4 Thesis Overview........................................................................................................6 

II.  Literature Review ...........................................................................................................7 

2.1 Chapter Overview .....................................................................................................7 
2.2 Historical LTA Vehicles ...........................................................................................8 

2.2.1 Airship Structures ............................................................................................. 8 
2.2.2 Missions .......................................................................................................... 14 
2.2.3 Design Challenges .......................................................................................... 15 

2.3 Thin Shelled Sphere ................................................................................................34 
2.4 Isogrid .....................................................................................................................45 
2.5 Geodesic Sphere ......................................................................................................45 
2.6 Summary .................................................................................................................53 

III.  Methodology ...............................................................................................................54 

3.1 Chapter Overview ...................................................................................................54 
3.2 Rotating Cylinder Vacuum LTA Vehicle Concept .................................................54 

3.2.1 Buoyancy and Weight ..................................................................................... 56 
3.2.2 Aerodynamics ................................................................................................. 62 
3.2.3 Power Requirements ...................................................................................... 64 
3.2.4 Engine and Fuel Weight ................................................................................. 67 

3.3 Isogrid Stiffened Sphere ..........................................................................................70 
3.4 Geodesic Sphere ......................................................................................................75 

3.4.1 Geometry ........................................................................................................ 84 



 

ix 
 

3.4.2 Optimization ................................................................................................... 87 
3.5 Summary .................................................................................................................90 

IV. Analysis and Results ....................................................................................................90 

4.1 Chapter Overview ...................................................................................................90 
4.2 Minor Investigations ...............................................................................................91 
4.3 Rotating Cylinder Vacuum LTA Vehicle ...............................................................96 
4.4 Isogrid Stiffened Sphere ........................................................................................101 
4.5 Geodesic Sphere ....................................................................................................109 
4.6 Potential Missions .................................................................................................119 
4.7 Summary ...............................................................................................................126 

V. Conclusions and Recommendations ...........................................................................128 

5.1 Chapter Overview .................................................................................................128 
5.2 Conclusions of Research .......................................................................................128 
5.3 Significance of Research .......................................................................................130 
5.4 Recommendations for Future Research ................................................................130 

Appendix A: Matlab Code ...............................................................................................132 

A.1 Optimization Routine (LTA_opt.m) ....................................................................132 
A.2 Optimization Sub-Routine: Cost Function (Cost.m) ............................................133 
A.3 Optimization Sub-Routine: Sphere Parameters (Sphere_parameters.m) .............133 
A.4  Optimization Sub-Routine: Constraints (Constraints.m) ....................................134 
A.5 Optimization Sub-Routine: Finite Element Program ...........................................134 
A.6  Optimization Sub-Routine: Datcreate (Datcreate.m) ..........................................139 
A.7 Optimization Sub-Routine: Geodesic Sphere Geometry (LTAgeod2.m) ............141 
A.8 Optimization Sub-Routine: .dat File Reader (Datread_beam.m) .........................147 
A.9  Von Karman Efficiency for Rotating Cylinder (LTAheliumcylinder.m) ...........152 
A.10  Optimization of Isogrid Stiffened Sphere (LTAsphere.m) ...............................156 
A.11  Partial Vacuum Study (LTAspherepv.m)..........................................................158 
A.12  Altitude Effect on W/B (LTAspherealt.m) .......................................................159 
A.13  Optimization of Isogrid (LTAisogrid_opt.m) ...................................................160 
A.14  Optimization of Isogrid Sub-Routine:  (LTAisogrid_constraints.m) ................161 
A.15  Optimization of Isogrid Sub-Routine:  (LTAisogrid_cost.m) ...........................162 

  



 

x 
 

List of Figures 

 Page 
Figure 1: Lana’s Flying Boat [3] ........................................................................................ 3 

Figure 2: USS Shenandoah Rigid Construction [9] .......................................................... 10 

Figure 3: ZMC-2 Metal Clad Airship ca. 1930 [12] ......................................................... 12 

Figure 4: Semirigid, Nonrigid, Rigid Airships [14] .......................................................... 14 

Figure 5: Causes of 29 Helium and 27 Hydrogen Airship Mishaps ................................. 18 

Figure 6: Ground Handling [9] ......................................................................................... 20 

Figure 7: Comparison Between Lifting Gases .................................................................. 22 

Figure 8: Griffith Airfoil [24] ........................................................................................... 26 

Figure 9: Von Karman Efficiency of BLC Vehicles ........................................................ 29 

Figure 10: Buckled Sphere [29] ........................................................................................ 36 

Figure 11: Prolate Sphere [30] .......................................................................................... 38 

Figure 12: Laminate Stiffness as a Function of Orientation ............................................. 44 

Figure 13: Grid Stiffened Sphere, f=10 ............................................................................ 45 

Figure 14: Geodesic Sphere f=1 (Icosahedron) ................................................................ 47 

Figure 15: Geodesic Sphere f=2 ....................................................................................... 47 

Figure 16: Spherical to Cartesian Conversion in Matlab [38] .......................................... 48 

Figure 17: Icosahedron-Cutting ........................................................................................ 51 

Figure 18: Icosahedron-Cut .............................................................................................. 51 

Figure 19: Icosahedron-Top View .................................................................................... 52 

Figure 20: Rotating Cylinder Vehicle ............................................................................... 56 

Figure 21: Rotating Cylinder Loads ................................................................................. 59 



 

xi 
 

Figure 22: Formation of Virtual Elliptical Body at Critical Velocity [45] ....................... 63 

Figure 23: Reduction in Moment and Drag at Critical Rotational Velocity [45] ............. 67 

Figure 24: Isogrid Geometry [36] ..................................................................................... 70 

Figure 25: UHM Carbon Epoxy Isogrid Optimization ..................................................... 74 

Figure 26: Geodesic Sphere Representation ..................................................................... 75 

Figure 27: Geodesic Sphere – Volume Calculation .......................................................... 81 

Figure 28: Workflow Diagram .......................................................................................... 84 

Figure 29: Geodesic Sphere Generation-Top Pentagon Cap ............................................ 86 

Figure 30: Geodesic Sphere Generation-Center Band of 10 Major Triangles.................. 87 

Figure 31: Effect of Density on W/B ................................................................................ 92 

Figure 32: Effect of Young’s Modulus of Elasticity on W/B ........................................... 93 

Figure 33: Effect of Increasing Internal Pressure ............................................................. 95 

Figure 34: Power Required by RCVLTAV at 75% Drag Torque at 19.8km MSL .......... 98 

Figure 35: Power Required by RCVLTAV at 1% Drag Torque at 19.8km MSL ............ 99 

Figure 36: RCVLTAV at 1% Drag Torque at 19.8km MSL .......................................... 100 

Figure 37: Beryllium Isogrid Optimization .................................................................... 102 

Figure 38: UHM Carbon Epoxy Isogrid Optimization ................................................... 105 

Figure 39: Isogrid Visualization f=85 ............................................................................. 106 

Figure 40: Effect of Geometric Frequency on Run Time ............................................... 110 

Figure 41: Effect of Geometric Frequency on Feasible Design Space ........................... 111 

Figure 42: Effect of Geometric Frequency on 𝜎 ............................................................. 112 

Figure 43: Graphical Representation of Geodesic Sphere Design Space ....................... 114 

Figure 44: Optimal Geometry for rs=0.33 m Geodesic Sphere ...................................... 115 



 

xii 
 

Figure 45: FEA of Vectran Triangular Plate With Clamped Edges ............................... 117 

Figure 46: Payload Capability for W/B=0.94 ................................................................. 118 

Figure 47: Effect of Increasing Designed Deployment Elevation .................................. 121 

Figure 48: Effect of Altitude on W/B ............................................................................. 122 

Figure 49: Conceptual Design of BLC Vacuum LTA Vehicle [24] ............................... 123 

Figure 50: von Karman Efficiency at W/B=0.8 𝐶𝐷 = 0.0169 ...................................... 124 

Figure 51: von Karman Efficiency at W/B=0.8 𝐶𝐷 = 0.1 ............................................. 125 

 



 

xiii 
 

List of Tables 

 Page 
Table 1:  C-27J Specifications [7] ...................................................................................... 5 

Table 2:  Research Questions .............................................................................................. 6 

Table 3:  BLC LTA Vehicle Assumptions ....................................................................... 33 

Table 4:  Material Properties-Monocoque Shell ............................................................... 43 

Table 5:  Icosahedron Vertex Locations ........................................................................... 49 

Table 6:  Material Properties-Skin .................................................................................... 76 

Table 7:  Material Properties-Frame ................................................................................. 82 

Table 8: Rotating Cylinder Vehicle Assumptions ............................................................ 97 

Table 9:  Isogrid Results ................................................................................................. 109 

Table 10: Research Questions Revisited ......................................................................... 128 

 

 

 

 

 

 

 

 

 

 

 

 



 

xiv 
 

 

 

 

Nomenclature 

Symbol Description 
a triangle leg length 
𝑎𝑐 cylinder area 
𝑎𝑐𝑖𝑟𝑐 area of great circle of sphere 
𝑎𝑔 gondola cross-sectional area 
𝑎𝑔𝑠 geodesic sphere surface area 
𝑎𝑝 propeller area 
𝑎𝑠 sphere area 
𝑎𝑠𝑘𝑖𝑛 cross sectional area of sphere skin 
b stiffener thickness 
BLC Boundary Layer Control 
CD drag coefficient 
𝐶𝐷𝑐 rotating cylinder drag coefficient 
𝐶𝑑𝑔  gondola drag coefficient 
𝐶𝑓𝑏 bearing friction coefficient 
𝐶𝑚𝑠 spherical endcap rotational drag coefficient 
𝐶𝑃𝐷 drag power coefficient 
𝐶𝑃𝑀 moment power coefficient 
d stiffener depth 
𝐷 drag force 
𝐷𝑔 gondola drag 
E Young’s modulus of elasticity 
𝐸∗ stiffness equivalent Young’s modulus of elasticity 
𝑒𝑉𝐾 von Karman efficiency 
f geometric frequency of geodesic sphere 
𝐹𝑎 axial load on cylinder 
𝐹𝑏 bearing load 
𝐹𝑐 centripetal force 
𝐹𝑝 force due to atmospheric pressure 
FEA Finite Element Analysis 
ft feet 
g acceleration due to gravity 
𝑔1 material compressive strength constraint 
𝑔2 cylindrical beam buckling load constraint 
𝑔3 cylindrical beam maximum thickness constraint 
𝑔4 cylindrical beam maximum radius constraint 



 

xv 
 

h triangle height 
HALED High Altitude Long Endurance Demonstrator 
𝐼𝑐𝑏 cylindrical beam area moment of inertia 
𝑘𝑒𝑒 engine efficiency 
kg kilogram 
KIAS knots indicate air speed 
km kilometers 
𝑘𝑝𝑒 propeller efficiency 
KTAS knots true air speed 
𝑙 airship length 
lb pound 
𝐿𝑏 buoyant force 
𝐿𝑏𝑐 buoyant force of cylinder with spherical endcaps 
𝑙𝑐 cylinder length 
𝑙�̅�𝑏 average cylindrical beam length 
LTA Lighter Than Air 
m meter 
𝑀 rotating cylinder drag moment 
𝑚𝑐 cylinder mass 
me engine mass 
𝑚𝑏 bearing mass 
MB Mega Bytes 
𝑚𝑔 gondola mass 
𝑚𝑠 sphere mass 
MSL Mean Sea Level 
𝑛𝑒 number of edges 
nm nautical miles 
𝑛𝑡 number of triangular faces 
𝑛𝑣 number of vertices 
𝑝𝑎 atmospheric pressure 
𝑃𝑏 power required due to bearing friction 
𝑝𝑐𝑟𝑖𝑡 critical pressure 
𝑃𝑒 Euler load on cylindrical beam 
𝑃𝑟 power required to rotate cylinder  
𝑃𝑟𝑒𝑞 power required 
𝑃𝑠 power required due to spherical end-cap drag 
𝑃𝑡𝑜𝑡 total power required 
𝑃𝑥 power required to maintain translational velocity 
𝑟𝑏 bearing radius 
𝑅𝑒 Reynold’s number 
plg pressure of lifting gas 
𝑟 radius 
RAM Random Access Memory 
𝑟𝑐 cylinder radius 



 

xvi 
 

𝑟𝑐𝑏 cylindrical beam radius 
𝑟𝑠 sphere radius 
R specific gas constant 
SHP Shaft Horse Power 
T temperature 
𝑡̅ smeared skin thickness of isogrid 
𝑡𝑐𝑏 cylindrical beam thickness 
𝑡∗ stiffness equivalent thickness 
𝑡𝑠𝑘𝑖𝑛 skin thickness 
𝑡𝑠𝑘𝑖𝑛𝑐  cylinder skin thickness 
𝑡𝑠𝑘𝑖𝑛𝑠 sphere skin thickness 
𝑢 velocity 
UHM Ultra High Modulus 
𝑢𝑚 maximum velocity 
𝑢𝑅 rotating cylinder surface speed 
USS United States Ship 
v volume 
vc volume of cylinder 
vgs geodesic sphere volume 
vs volume of sphere 
vs volume of structure 
𝑊 useful lift 
W/B weight/buoyant force of structure 
ZMC Metal Clad Airship 
𝛼 non-dimensional value for isogrid calculations see equation  (70) 
𝛽 non-dimensional value for isogrid calculations see equation  (69) 
ζ energy density of fuel 
𝜆 fineness ratio 
𝜇 air dynamic viscosity 
𝜈 Poisson’s ratio 
𝜌𝑎𝑖𝑟 density of air 
𝜌𝑐𝑏 cylindrical beam material density 
𝜌𝐻𝑒 density of helium 
𝜌𝑠 skin density 
𝜎𝑎 axial stress 
𝜎𝑐𝑏𝑐𝑦 cylindrical beam compressive yield stress 
𝜎𝑐𝑟𝑖𝑡 critical stress 
𝜎𝑐𝑟𝑏 rib buckling critical stress 
𝜎𝑐𝑠𝑏 skin buckling critical stress 
σcy material compressive yield strength 
𝜎𝑟 radial stress 
𝜔 rotational velocity 
Ω relative velocity of cylinder surface to free-stream velocity 



 

xvii 
 

Ωcrit relative velocity at which virtual elliptical body forms 
 



 

1 
 

DESIGN OF A LIGHTER THAN AIR VEHICLE THAT ACHIEVES POSITIVE 
BUOYANCY IN AIR USING A VACUUM 

 I.  Introduction 

1.1 Motivation 

Lighter Than Air (LTA) vehicles have historically used lifting gases to achieve 

positive buoyancy in air. Buoyancy is defined as the force exerted on an object by the 

fluid in which it is submerged. This force is due to the difference in pressure at the top of 

an object vs. the bottom of the object. There is a difference in pressure because of the 

weight of the column of fluid surrounding the object. Positive buoyancy is defined as the 

weight of an object being less than the weight of the fluid it displaces. Negative buoyancy 

is defined as the weight of an object being more than the weight of the fluid it displaces, 

in other words, it tends to sink. Neutrally buoyant means the object is the same weight as 

the fluid it displaces, so that the force of buoyancy is equal to the object’s weight [1]. A 

vehicle could theoretically achieve positive buoyancy through the use of a vacuum in 

place of a lifting gas. The difficulty of designing a vacuum LTA structure has prevented 

it from being used in the past. The primary advantage of a vacuum LTA structure would 

be the elimination of the requirement to purchase or transport a lifting gas.  

If a vacuum could be used to replace lifting gas, it would require a suitable 

mission to make it more than just an expensive parlor trick. There are various niche 

missions currently filled by LTA vehicles, but they are currently unable to compete with 

the mainstream modes of transportation. The vacuum LTA vehicle was evaluated to 

determine missions for which it was suited. One such mission motivated the first sponsor 
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of this research to investigate the following line of reasoning: Small, regional airports are 

largely underused while major airports are often congested. A vehicle capable of 

efficiently carrying cargo while operating out of small airports would fill a niche 

transportation market. This would require a vehicle that could land on short runways with 

large payloads. Could the vacuum LTA vehicle possibly be a solution to this challenge? 

1.2 Background 

In 1670 Francesco Lana de Terzi published a book titled, “Prodromo dell'Arte 

Maestra” in which he proposed the design of a LTA vehicle that he theorized would 

attain positive buoyancy in air using a vacuum [2]. His structure resembled a ship and 

was suspended from four thin-shelled copper spheres as shown in Figure 1 [3] . 

Unfortunately copper does not have a high enough specific stiffness to achieve positive 

buoyancy in air using a smooth shell, as will be shown in the theory section of this thesis. 

Nevertheless, Lana correctly understood that the principal of buoyancy could be applied 

to air and that the sphere was the ideal shape for a LTA vacuum enclosure. The sphere is 

the ideal shape for a vacuum enclosure because it requires the minimum thickness to 

achieve the stiffness required to prevent buckling of any shape. It also has the minimum 

surface area per volume of any shape, which maximizes buoyancy, minimizes pressure 

loading, and minimizes weight.  
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Figure 1: Lana’s Flying Boat [3] 

 

 During the course of this research it was not uncommon to find blogs and even 

published papers musing about the possibility of vacuum LTA structures. Most of the 

authors did not apply engineering principles to the problem. The most common 

misconception was that if a sphere was made big enough the problem would get easier 

because of the squared cube law. The idea behind the squared cube law is that the area of 

the sphere grows at a rate of radius squared, while the displaced volume of air grows at a 

rate of radius cubed. This is true, but the fallacy of this argument is in not understanding 

that the thickness of the sphere must grow as well. The tendency for a thin shelled sphere 

to buckle under external pressure is a function of the thickness of the shell as shown by 

equation (14) [4, p. 1292]. To prevent buckling, the thickness must grow proportionally 

http://upload.wikimedia.org/wikipedia/commons/5/52/Flying_boat.png
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with the surface area of the sphere, so that no matter how big it is, the weight of the 

sphere remains proportional to the weight of the air displaced.  

Akhmeteli and Gavrilin claimed that a vacuum LTA structure could be 

constructed using layered shell sandwich construction [5]. Their approach to the vacuum 

sphere formed the basis for equation (23) which not only shows why copper cannot be 

used to form a thin shelled, positively buoyant vacuum sphere, but why no material 

available today could either. Only a geometrically stiffened shell, such as the sandwich 

construction investigated by Akhmeteli and Gavrilin, could possibly achieve this feat. 

1.3 Research Objective 

For a theoretical vehicle to be operationally viable, it must achieve performance 

comparable to or better than existing vehicles with similar mission types. The C-27J was 

designed to transport cargo to small airports relatively efficiently. One purpose of this 

thesis was to determine whether a vacuum LTA vehicle could effectively perform the 

same mission as the C-27J. Therefore it became necessary to evaluate the C-27J 

capabilities and compare it to any proposed vacuum LTA vehicle design. The C-27J 

specifications are listed in Table 1, [6].  
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Table 1:  C-27J Specifications [7] 

 
Dimensions 

Span 28.70 m 94.16ft 
Length 22.70 m 74.48 ft 
Height 9.65 m 31.6 ft 
Wing area 81.94 m 882 ft 

Weights 
Normal Landing Weight 27,500 kg 60,627 lb 
Maximum Takeoff  31,800 kg 70,107 lb 

Power Plant 
Engine Rolls-Royce AE 2100-D2 
Engine Power 4637 Shaft Horse Power 
Propeller Dowty R-391 six-blade 

Performance (clean, ISA) 
Maximum Service Ceiling 9,144 m 30,000ft 
Maximum Cruise Speed 315 KTAS  
Landing Ground Roll  340 m 1,115 ft 
(Maximum Landing Weight, Sea Level) 

 

LTA vehicles are generally stable, limited in speed, have long loiter times, large 

payloads, and poor handling qualities in the landing environment. These characteristics 

have largely relegated them to niche markets such as surveillance, communication relays, 

and advertisement. Table 2 lists key questions that must be answered in order to 

determine whether a vacuum LTA vehicle is a feasible concept. 

http://upload.wikimedia.org/wikipedia/commons/3/3d/Alenia_C-27J_(Pratica_di_Mare)_edit1.jpg
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Table 2:  Research Questions 

1 Can positive buoyancy be achieved by a structure in air using a vacuum? 
2 Is a vacuum LTA structure a feasible platform for any existing missions? 
3 What is the ideal internal pressure of a partial vacuum LTA structure? 
4 What is the ideal operating altitude of a vacuum LTA structure? 
5 Are there viable geometric shapes for a vacuum LTA structure? 
6 Do construction techniques exist which can construct the required 

geometric shapes? 
7 What are the critical material properties for a vacuum LTA structure? 
8 Do materials exist from which a vacuum LTA structure can be 

constructed? 

1.4 Thesis Overview 

Is LTA flight possible using a vacuum? During the course of this investigation 

von Karman’s efficiency was used to compare theoretical vehicle design spaces to 

existing vehicles. A unique vehicle consisting of counter-rotating cylinders that take 

advantage of a virtual elliptical body to minimize drag was proposed and evaluated for its 

energetic feasibility. A program was developed in Matlab that optimized the geometry of 

a geodesic sphere through the use of built in optimization functions and finite element 

analysis. All of these investigations attempted to answer the research questions posed in 

Table 2. 

The literature review section examines historical LTA vehicles to determine the 

criterion for a successful LTA vehicle. It further defines the problem of constructing a 

vacuum sphere through the study of thin shelled spheres under pressure. Finally, it 

introduces the two methods of geometrically improving upon a thin shelled sphere that 

were used in this study. These are stiffening of a thin shell using blade type stiffeners 

arranged in an isogrid and a geodesic sphere of cylindrical beams supporting a thin 

membrane. 
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The methodology section introduces the counter-rotating cylinder LTA vehicle 

and explains the methods used to evaluate its feasibility. It explains the methods used to 

evaluate an isogrid design. Finally, it describes how the geometry of a geodesic sphere 

was calculated, evaluated, and optimized. 

 The results section gives an answer to the viability of each of the proposed 

methods for achieving positive buoyancy using a vacuum. The vehicle design spaces are 

plotted on a von Karman efficiency graph. The design spaces of the isogrid stiffened 

sphere and geodesic spheres are graphed for a visual representation of the optimization 

performed on each structure. The thesis concludes by answering the questions posed in 

the objective section along with recommendations for further study. The appendix 

contains samples of the Matlab code used to perform each part of this study.  

II.  Literature Review 

2.1 Chapter Overview 

There is a scarcity of literature available on vacuum LTA vehicles, which is not 

surprising considering none have yet been built. However, each of the components 

required for a successful vacuum LTA vehicle have been extensively studied and 

published. The focus of this section is to introduce LTA vehicles, their structures, 

missions, and potential areas for improvement.  

Although a vacuum LTA structure has apparently never been built, there has been 

extensive research into the buckling of pressure vessels under external pressure. This 

section examines the empirically derived formulas for failure of a sphere and applies 
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them to the problem of achieving positive buoyancy in air. After establishing that a thin 

shelled sphere constructed of contemporary materials cannot achieve positive buoyancy 

in air using a vacuum, this section presents two possible methods of geometrically 

stiffening a sphere to prevent buckling without adding too much weight. These methods 

are an isogrid stiffened sphere and a geodesic sphere. 

2.2 Historical LTA Vehicles 

LTA vehicles have a long history of impressive achievements and yet have been 

relegated to filling niche mission profiles. These achievements include the first human 

flight, accomplished in a hot air balloon by Jacques-Étienne Montgolfier in 1782 [8, p. 2] 

and the first passenger airline Deutsche Luftschiffahrts-Aktiengesellschaft (DELAG) in 

1909 [9]. In 1917 the L-59 “Africa Ship” proved the feasibility of intercontinental 

zeppelin travel by carrying 15 tons of cargo and 22 persons on a 4,225 mile flight during 

a supply mission to German East Africa [9]. The qualities of LTA vehicles enabled them 

to accomplish missions unsuitable for other vehicles, but also historically prevented them 

from competing against mainstream methods of transportation. Of primary importance to 

this study is airship structure, mission profiles, and potential for improvement on 

historical designs.  

2.2.1 Airship Structures 

Airship structures can be organized into three primary categories; rigid, semi-

rigid, and non-rigid. Each of these structures have qualities that significantly impact 

operational capabilities.  
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2.2.1.1 Rigid 

Rigid structures consist of a rigid frame with a skin stretched over the outside as 

shown in Figure 2 [10]. The frame distributes loads throughout the ship. The original 

Zeppelins consisted of an aluminum frame surrounded by a permeable cloth skin. 

Hydrogen lifting gas was contained within animal skin ballonets inside the structure. 

Weight/Buoyancy (W/B) for these structures was poor, requiring large volume to achieve 

useful designs. Modern material and construction technologies can significantly decrease 

the weight of rigid frames and skins through the use of carbon composites and advanced 

fabrics and membranes. A modern example of a rigid airship is the experimental 

Aeroscraft created by the Aeros company [11]. Rigid structures are able to maintain their 

shape because of the rigid nature of their structures.  This enables the design of lifting 

bodies as well as the ability to withstand large aerodynamic loads without significant 

warping. Rigid structures also transmit loads throughout the structure which enables 

mounting of engines, gondolas, and control surfaces. This enables improved 

controllability by side mounted, vectored thrust engines, reduced drag by internally 

placing payloads, and optional hybrid lift by taking advantage of a lifting body shape. 

Hybrid lift is the use of aerodynamic lift in addition to buoyant lift. Although 

aerodynamic lift incurs significant drag in the case of a LTA vehicle, it allows take off 

and landing in a heavier than air configuration which improves ground handling.  
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Figure 2: USS Shenandoah Rigid Construction [9] 

 

 

Disadvantages to the rigid airship design include increased weight for the frame 

[8, p. 22] and poor damage tolerance due to the rigidity of the structure [9, p. 150]. 

Whereas a non-rigid structure can bend without damaging the structure when design 

bending moments are exceeded, a rigid structure will be damaged when bending 

moments are exceeded. 

An interesting variation of the rigid airship design is the metal-clad airship as 

shown in Figure 3 [12]. The US Navy Metal Clad Airship (ZMC)-2 consisted of an 

aluminum skin with aluminum stringers riveted together. The ZMC-2 was notable for its 

ability to retain the helium lifting gas much longer than contemporary LTA vehicles [12]. 

This was due to the low permeability of the aluminum skin. It was also notable for its low 
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fineness ratio (𝜆), which is defined by equation (11) and is the ratio of length to diameter, 

which was chosen to add strength to the structure [8, p. 57]. The low 𝜆 strengthened the 

ZMC-2 by decreasing bending moments and increasing the resistance to bending [13, p. 

163], [12]. There are published equations for calculating moments on an airship in [13, p. 

163], but a simplified explanation as to why low 𝜆 decreases moments and increases 

resistance to moments can be made by picturing the LTA vehicle as a cylinder. The 

longer the cylinder, and thus the higher 𝜆, the higher the bending moments the LTA 

vehicle will experience simply due to a longer moment arm. For a given volume, a higher 

𝜆 corresponds to a lower radius, which in terms of a cylinder would mean less resistance 

to bending. Also, as length increases and volume remains the same, cross sectional area 

also increases, thus increasing loading due to gusts. A low 𝜆 decreases stability because 

of the lower rotational inertia and moment arm when compared to a higher 𝜆, requiring 

relatively large stabilizers on the ZMC-2. 
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Figure 3: ZMC-2 Metal Clad Airship ca. 1930 [12] 

 

 

2.2.1.2 Semi-Rigid 

Semi-rigid airships consist of a rigid internal frame surrounded by an inflated skin 

that maintains shape through the use of internal pressure. These structures carry the 

advantages of both the rigid and non-rigid designs. The rigid internal frame distributes 

loads throughout the ship and enables freedom to mount engines, payloads, and control 

surfaces anywhere on the airship. The pressure supported skin enables a smaller internal 

frame that is strength, not shape, oriented, thus reducing weight.  

A modern example of the semi-rigid airship is the Zeppelin-NT, which has an 

internal frame as shown in Figure 4 [14]. The Zeppelin-NT rigid frame is composed of 

triangular trusses that run the length of the airship. The skin touches the frame at specific 

points but maintains its shape through internal pressure.  This airship can conduct ground 

handling with a crew of three people using vectored thrust [15]. Vectored thrust is made 
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possible by the side mounting of its engines, which is made possible by the internal 

frame.  

2.2.1.3 Non-Rigid 

Non-rigid airships consist of an inflated gas envelope that maintains shape 

through internal pressure. These structures are popularly referred to as “blimps”. In order 

to withstand mooring and aerodynamic forces, the bows of non-rigid airships generally 

have rigid caps. There is also usually a rigid structure at the stern for mounting the 

stabilizers. The gondola generally hangs externally from a canopy that distributes forces 

over a large portion of the gas envelope as shown in Figure 4 [14]. A modern example of 

a non-rigid airship is the 1960s era Goodyear Blimp as shown in Figure 4. Non-rigid 

airships do not require significant structures and therefore can achieve low W/B and high 

altitude such as the Lockheed Martin High Altitude Long Endurance Demonstrator. They 

also have the added advantage of being resilient. If the design bending moment of a non-

rigid airship is exceeded, the skin may temporarily kink, but unlike the rigid airship, it 

will not be damaged[13, p. 164]. This is because internal gas pressure provides structural 

support as opposed to a rigid structure. 
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Figure 4: Semirigid, Nonrigid, Rigid Airships [14] 

 

 

2.2.2 Missions 

The original mission of the LTA vehicle was aerial reconnaissance. In 1806 

Frenchman Jean Coutelle was lifted 450 meters in a tethered balloon to observe enemy 

formations and movements in the French Revolution [8, p. 2]. Airships were used in the 

American Civil War, the Franco-Prussian Wars, World War I and World War II [8, p. 2]. 

During that time Airships conducted passenger and cargo transportation, reconnaissance, 

and bombing. As heavier than air flight technology matured, LTA vehicles were replaced 

by heavier than air vehicles for many of these missions. Today LTA vehicles, to include 

unmanned airships and aerostats, are primarily used as sensor platforms and 

communications relays [16]. Airships in particular are used for product recognition, 

advertising, tourism, and as commercial aerial photography platforms [17]. The 
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endurance, lift capacity, and stability of LTA vehicles makes them well suited for these 

missions, but there are aspects of LTA vehicles that prevent them from being used for 

cargo or passenger transportation. These aspects are design challenges that must be 

overcome if the LTA vehicle is to become a viable competitor in the transportation 

establishment.  

2.2.3 Design Challenges 

The first design challenge of LTA vehicles is ground handling, which historically 

requires robust hangars and mooring capabilities. A related design challenge is buoyancy 

control which significantly affects mooring and taxiing. Lifting gases pose unique supply 

and operational problems that must be addressed. Efficiency, as it relates to velocity and 

fuel requirements, is the final design challenge. 

An important aspect of LTA history is written in the mishap record. The mishap 

record has recurring themes that shed light on the design challenges of LTA vehicles. It is 

the duty of the operator to recognize these themes in order to avoid repeating the 

mistakes of the past, and the duty of the engineer to prevent future loss of life and 

property through the improvement of design. Because this is a design oriented study, it 

proved fruitful to study the mishap record. The mishap study gave clear answers to 

several of the questions posed in the objective section about how to make the LTA 

vehicle competitive as a cargo or passenger transportation platform.  

A review of mishap records for LTA vehicles over the previous century revealed 

an interesting trend as shown in Figure 5 [9], [18]. Mishap causal factors for LTA 

vehicles are shown by percent of total reported mishaps for both hydrogen and helium 

airships over the past century. It is interesting to note that pilot error accounted for far 
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less mishaps in hydrogen airships than in helium airships. The reason for this trend is 

possibly twofold. Pilots of hydrogen airships flew at a time when airships were far more 

prevalent, and training was much more robust in the form of master and apprentice [9]. 

Pilots of helium airships were flying during a time where airships were one of a kind, 

experimental aircraft with inexperienced crew, resulting in a higher probability of pilot 

error (with the exception of the Goodyear Blimps, which have an impressive safety 

record and experience pilots). The most staggering statistic is that 96% of reported 

hydrogen airship mishaps involved fire. It is likely that there were many unreported 

mishaps and that those mishaps not resulting in fire were often not important enough to 

be included in the historical reports used for this study. The helium airship mishap 

statistics come from modern aircraft mishap reporting requirements, which include a high 

number of minor incidents. This skews the statistics towards making reported hydrogen 

airship mishaps seem more catastrophic on average than reported helium airship mishaps. 

That being said, the number of hydrogen airship mishaps resulting in death is a 

staggering 41%. Even more devastating, 15% of Hydrogen mishaps resulted in 100% loss 

of life onboard. Even when a helium airship mishap resulted in death, it was usually only 

one or two people with the vast majority of those involved surviving with little or no 

injury. In addition to the loss of life, every hydrogen airship mishap involving fire 

resulted in a complete destruction of the airship, which represents significant monetary 

loss, often including buildings on the ground.  

Another skew to the statistics is that many of the mishaps involving maintenance 

did not involve people on board the airships, so that the number of hydrogen airship 

mishaps not resulting in death or injury was increased. The potential for destruction by 
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hydrogen explosions and fire was so great that in one incident four airships were 

destroyed in a single hangar fire. Goodyear Blimps stopped using hydrogen as a lifting 

gas after the Wingfoot Air Express crashed into the Chicago Trust and Savings Building 

killing 13 people and injuring 27 in 1919 [9]. The US government stopped using 

hydrogen as a lifting gas after the US Army airship Roma hit power lines, ignited and 

killed 34 out of 45 people on board in 1922 [9]. The infamous Hindenburg was actually 

designed to carry helium, but due to the US policy of hoarding helium in anticipation of 

World War II, the US refused to sell helium to Nazi Germany [9]. This decision resulted 

in the most widely publicized airship disaster. Interestingly, the USS Akron, the airship 

with the most deadly airship crash in history, was a helium airship. In the Akron disaster, 

it was hypothermia and drowning in the ocean due to a lack of life boats that resulted in 

the deaths of 73 out of 76 crewmembers [9].  
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Figure 5: Causes of 29 Helium and 27 Hydrogen Airship Mishaps 

 

 

 

The study of mishaps enables the airship designer to avoid past mistakes and 

mitigate risk. The primary cause of death and destruction in airship history is 

unequivocally fire as a result of using hydrogen as a lifting gas. The simple solution to 

this problem is to use an inert lifting gas such as helium. Unfortunately, if helium is 

unavailable as in the case of the Hindenburg, there are few lifting gas alternatives. This is 

a strong argument for the investigation of a vacuum in place of a lifting gas. 

Weather, pilot error, and maintainer error are all mishap causes that can be 

mitigated through modern aviation practices. This leaves ground handling and buoyancy 

control as the primary safety concerns for the designer of LTA vehicles. These two issues 

are actually closely related and can both be mitigated by buoyancy control.  
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2.2.4.1 Ground Handling and Buoyancy Control 

The problem with ground handling of LTA vehicles is that they are large and 

therefore experience great forces due to wind gusts that can push them into obstacles, 

damage their structure and break mooring lines. In addition to large wind loads, LTA 

vehicles are generally close to neutral buoyancy, which results in very little force 

anchoring them to the ground, requiring significant mooring measures. Ground handling 

of the large airships built during the early 20th century required crews as large as 700 

men [19, p. 300] to hold the mooring lines as shown in Figure 6, [9]. These operations 

were so labor intensive that airships had to land or take off in the early morning or late 

evening when the mooring crews were off work [9]. The problem was that the ground 

crews were not full time airship handlers, they had full time jobs and were part time 

airship handlers. Many airships were damaged during mooring operations, especially 

when being moved in and out of hangars. As shown in Figure 5 about a quarter of 

mishaps occurred during ground handling. To reduce the chance of mishaps, anchor 

airships for servicing between flights, and decrease manpower requirements, fixed and 

portable mooring masts were constructed. Portable mooring towers were originally trains 

on tracks that could safely move the airships in and out of their hangars. Today’s smaller 

LTA vehicles are moored by trucks with towers attached. The Zeppelin NT, through the 

use of vectored thrust and portable mooring towers, can moor with a crew as small as 

three people [15]. 
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Figure 6: Ground Handling [9] 

 

 

 

In order for LTA vehicles to become more practical they would require the ability 

to land at small, unimproved airfields without mooring facilities. This could be 

accomplished with the ability to land and taxi heavier than air. This would be possible 

with advanced buoyancy control through the use of onboard compressors coupled with 

hybrid lift for landing heavier than air. If the buoyancy of a LTA vehicle could be 

precisely and rapidly adjusted, it would enable vertical take offs and landings without 

significant ground crew involvement or mooring equipment. This would enable use of 

LTA vehicles at unimproved landing sites, greatly increasing their usefulness. This point 

was not lost on Pasternak, owner of the Aeros company, who is currently focusing on 
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designing the next generation of LTA vehicles. Aeros’ primary technological 

improvement over traditional designs is buoyancy control [20]. 

2.2.4.2 Lifting Gas 

All methods of achieving LTA flight to date have relied upon lifting gas. 

Common lifting gases are heated air, helium, and hydrogen. Lifting gases serve to 

displace the ambient air and thus achieve positive buoyancy. LTA flight is possible due 

to buoyancy, which is defined by the Archimedes principal which states, “the buoyant 

force on a submerged object is equal to the weight of the fluid displaced by the object.” 

[8, p. 14]. If a structure will float in air the weight of the air displaced must be greater 

than the weight of the structure that displaces the air. The weight of the structure will 

include any gas contained inside the structure, so that a structure will be more likely to 

float if it contains a gas with a density lower than the air it displaces. The densities of the 

most common lifting gases are plotted in Figure 7. Hydrogen has the lowest density of 

any lifting gas. Helium is a close second, while heated air is only slightly less dense than 

air at standard atmospheric temperatures. In the case of an absolute vacuum there is no 

lifting gas so only the weight of the structure is considered to determine whether there is 

positive buoyancy. 
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Figure 7: Comparison Between Lifting Gases 

 
 

The first human flight was conducted in a LTA vehicle using heated air as a 

lifting gas [8, p. 2]. Today heated air is only used as a lifting gas for recreational purposes 

due to its relatively low buoyancy and high energy requirements. The high energy 

requirement stems from the need to keep adding energy to the lifting gas to keep the 

temperature elevated.   

Hydrogen has the lowest density of any lifting gas and was used as early as the 

civil war due to its high availability [8, p. 16]. Unfortunately hydrogen tends to produce 

violent chemical reactions with oxygen in the presence of a flame or spark, which 

generally results in catastrophic mishaps in LTA vehicles as shown in Figure 5, [9]. For 
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this reason hydrogen is seldom used as a lifting gas today. In order for hydrogen to be a 

viable lifting gas, the hydrogen airship would have to be designed in such a way that even 

in a mishap the hydrogen would not be ignited. It is possible that an airship could be 

designed with crash resistant, internal ballonets of hydrogen that could reduce the 

chances of catastrophic failure to an acceptable level. Modern buoyancy control would 

negate the need to valve off hydrogen during flight which would prevent dangerous 

mixtures of hydrogen and oxygen. Non-flammable membranes could also be used to 

prevent fire from spreading from an engine to the lifting gas. A cost benefit analysis 

would need to be performed to determine whether these additional design constraints 

would make hydrogen a reasonable substitute for helium. Regardless of how many safety 

measures are in place, hydrogen always has the potential to burn, which may prohibit it 

from ever being a viable lifting gas where human life is at risk. 

Helium has become the lifting gas of choice for LTA vehicles because it is 

chemically inert and has the second lowest density of any gas [8, p. 16]. Problems with 

helium as a lifting gas are primarily the small size of the helium molecule, which tends to 

pass through the thin membranes used to enclose it [21, p. 3], as well as mining and 

shipping costs. These problems do not generally pose a functional obstacle to the use of 

helium as a lifting gas, but do pose economic and supply challenges. Furthermore, the 

cost of helium is forecast to rise significantly in the next few years due to increased 

global demand and reduced supply [22]. Right now helium is widely available and costs 

about five times that of hydrogen [23]. Helium is a nonrenewable resource that is the 

product of radioactive decay, and unlike hydrogen, can not be manufactured. At current 

consumption rates it appears helium will continue to be available for at least a couple 
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more decades, however costs are forecast to rise significantly in the immediate future 

when the Bureau of Land Management stops selling helium to the public [23], [22].  

2.2.4.3 Efficiency 

The efficiency of any vehicle has a strong influence on whether or not it is 

economically feasible. Even if the handling characteristics of LTA vehicles are improved, 

the velocity, payload and efficiency of LTA vehicles will have to be comparable to 

vehicles with similar missions. For example, if the LTA vehicle travels the same velocity 

as a truck, lands at the same distribution centers as a truck , moves the same payload as a 

truck, but uses twice as much fuel, it will not be considered a viable alternative. Drag 

reduction, weight reduction, and increased propulsion efficiency all have the potential to 

improve LTA vehicle efficiency.  

Drag reduction can be accomplished through selection of optimal fineness ratio, 

Boundary Layer Control (BLC), and a clean profile. Fineness ratio (𝜆) is defined in 

equation (11) as airship Length/Maximum Diameter [8, p. 44]. The longer a ship, the less 

pressure drag it experiences for a given volume, but the more skin friction drag it incurs. 

Therefore, there is an optimal 𝜆 where the sum of skin friction drag and pressure drag is a 

minimum. A 𝜆 = 4.62 was found to result in the lowest total drag for C- Class airships  

during wind tunnel testing [8, p. 57], but the ideal 𝜆 will change with various design 

factors such as aircraft shape, BLC devices, and propulsion location.   

BLC can be used to reduce pressure drag and thereby enable a lower 𝜆 which will 

in turn decrease skin friction drag. A Griffith airfoil which was designed to achieve 

laminar flow through BLC is shown in Figure 8 [24]. Laminar flow is negligible in 
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Reynolds Numbers (𝑅𝑒) > 107 even with BLC, but BLC in the case of an airship can 

prevent flow separation and thereby decrease pressure drag. Re is a non-dimensional 

number calculated according to equation (1), where Re is the ratio of inertial forces to 

viscous forces [25, p. 350]. An airship the volume of the Zeppelin NT at 8,297 𝑚3 with a 

𝜆 = 2.5 would be 47 meters long. If it was travelling at a 𝑢∞=36 m/s, in a standard sea 

level atmosphere, the Re would be about 1.15 ∙ 108, meaning a Griffith airfoil would not 

achieve laminar flow. Goldschmied [24] conducted wind tunnel testing on bodies of 

revolution based on the Griffith airfoil where he showed that this concept for a 

submerged body resulted in a CD=0.0162. In comparison, the Akron Airship model had a 

CD =0.0235 at the same Reynolds number. In addition to drag reductions, he also showed 

there would be a decrease in propulsive power required by 45% when using a stern 

mounted propeller. His design consisted of a combination of a body of revolution 

designed after a Griffith airfoil with a 𝜆 ≅ 2.5, which maintained a positive velocity 

gradient along the body of the airfoil until approximately 80% chord, followed by an 

abrupt velocity discontinuity. A slot was placed just aft of the point of discontinuity 

which prevented the flow from separating using suction pumps. These pumps then 

discharged the fluid at near zero velocity into a stern mounted propeller, thus increasing 

the propeller’s efficiency above that of conventional stern mounted propellers.   

𝑅𝑒 =
𝜌𝑎𝑖𝑟 ∙ 𝑢∞ ∙ 𝑙

𝜇
 

 

(1) 
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Where: 
𝑙 = airship length 
𝑢∞ = freestream velocity 
𝜇 = dynamic viscosity 
𝜌𝑎𝑖𝑟 = air density 

 

 

 

Figure 8: Griffith Airfoil [24] 

 
 

A clean profile can result in drag coefficient reductions by as much as half. The 

drag coefficients by Goldschmied [24] were for a clean body of revolution and did not 

include a gondola, control surfaces, mooring lines, cables, landing gear, antennas etc… 

Through the use of modern materials most of those objects could be placed inside the 

envelope of the airship, significantly decreasing drag. Control surfaces, however, will 

most likely be required unless control can be achieved through a creative use of the 

suction slots and/or vectored thrust.  

Weight reduction is important in any aircraft design. In the case of the airship it is 

useful to minimize the ratio of Weight/Buoyant Force (W/B). A W/B=1 would be a 

neutrally buoyant structure that neither rises nor falls. A W/B<1 would be positively 

buoyant and float. A W/B>1 would be negatively buoyant and sink. The lower the W/B 
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of an airship, the more payload it can carry for a given volume, which translates in to 

greater transportation efficiency. Modern materials enable the construction of vehicles 

with much lower W/B than in the past. Modern airships often achieve W/B<0.3 [13, p. 

418], The Zeppelin NT has an estimated skin plus frame W/B ≅ 0.18 [15]. 

Improved propulsion efficiency can be accomplished through propeller placement 

and improved engine efficiency. Stern mounted propellers have been shown to reduce 

power required by about 26% by placing the propeller in the wake of the airship [24]. 

There is an additional drag savings by eliminating the need for fins on the side of the 

airship for mounting propellers. A stern mounted ducted fan or propeller in conjunction 

with a BLC suction slot on a Griffith airfoil was predicted to reduce power required by as 

much as 50% [24]. The tradeoff with stern mounted propulsion is a loss in 

maneuverability. If the airship gains 50% efficiency, but loses the ability to land at 

unimproved airfields it may not be a viable design. Therefore maneuverability would 

need to be considered in engine placement. A possible solution is to use propulsion 

similar to naval ships, which often have both bow and stern vectored thrust [13, p. 369]. 

By also placing an engine near the bow of the airship, controllability would be greater 

than with side mounted propulsion due to increased moment arms. 

Engine efficiency can possibly be improved on airships through the use of high 

efficiency engines such as diesel instead of high specific power engines such as 

turboprops. An optimization would have to be performed which took into account the 

specific mission for which the airship was being designed to make a correct judgment on 

engine type. A high specific power engine would be ideal for short mission durations, but 
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a high efficiency engine might be preferable for long missions due to a decreased fuel 

weight. 

Efficiency comparisons between vehicles of different types can be difficult. A 

vehicle designed for carrying a large amount of cargo can be expected to require more 

power than a vehicle designed for carrying a few passengers. Also, a vehicle designed for 

high velocities can be expected to require more energy than one designed for low 

velocity. Gabrielli and von Karman defined von Karman efficiency (𝑒𝑉𝐾) according to 

equation (2) [26]. Von Karman efficiency enables side by side comparisons of different 

vehicles by calculating efficiency based on the power required to move the maximum 

payload at the maximum velocity attainable by that vehicle. Note that 𝑒𝑉𝐾 is a non-

dimensional quantity that essentially gives a ratio of power required to useful power 

output. In the business of transporting cargo useful work would be defined as moving 

cargo, and useful power can be defined as moving cargo at a given velocity. Increasing 

velocity is desirable for some missions, but there is an associated cost of lost efficiency.  

This relationship between efficiency and velocity is shown in Figure 9. The cost of 

increasing velocity was shown by the Gabrielli-von Karman limit defined by equation 

(3). A plot of the Gabrielli-von Karman limit, as well as 𝑒𝑉𝐾 for various vehicles is 

shown in Figure 9.  

𝑒𝑉𝐾 =
𝑃𝑟𝑒𝑞

𝑊 ∙ 𝑢𝑚
 

 

 (2) 
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𝑒𝑉𝐾𝐿𝐼𝑀𝐼𝑇 = 0.000175 ∙ 𝑢   

 

(3) 

 

Where: 
𝑒𝑉𝐾 = Von Karman Ef�iciency 
𝑃𝑟𝑒𝑞 = Power Required 
𝑢 = velocity mph 
𝑢𝑚 = Maximum Velocity 
𝑊 = Useful Lift 

 

 

 

Figure 9: Von Karman Efficiency of BLC Vehicles 

 
 

Figure 9 uses data for various vehicles operating with their typical payload and 

velocity [26]. Larger values of 𝑒𝑉𝐾 mean less efficient modes of transportation so that to 
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move up on the y axis is to be less efficient, and to move right on the x axis is to achieve 

higher velocity. The dotted line on Figure 9 represents the Gabrielli-von Karman Limit, 

(3). This limit can be used to compare the relative efficiency of different vehicles. A 

vehicle that falls near the Gabrielli-von Karman limit can be considered a high efficiency 

vehicle in comparison to other vehicles that operate at the same velocity. The Gabrielli-

von Karman limit is based on viscous drag and vehicle data available in 1950. This limit 

can be broken by highly efficient modes of transportation such as trains and tankers, and 

so should be thought of as a guideline more than as a limit.  

The dashed curve in Figure 9 is of an idealized airship with an internal volume of 

8,297 𝑚3, the same as the Zeppelin NT [15]. The solid line is the same idealized airship 

design with an internal volume of 77,956 m3. The larger version can carry a payload of 

13,617 kg at 120 Knots Indicated Air Speed (KIAS) at 10k ft for 1852 km which is the 

range for the C-27J carrying 10,000 kg of cargo. The smaller airship represented by the 

dashed curve can only carry 1,361 kg to 10k ft at 100 KIAS for 1852 km. This is a 

simplified scenario which does not take into account the requirement for the structure to 

compensate for larger engines and higher aerodynamic loads. It includes increased engine 

and fuel weight according to equations (6) and (7). It also assumes a completely clean 

aerodynamic profile where the landing gear and control car are shrouded inside the 

airship to reduce drag. The curve does not represent the performance of one vehicle at 

various velocities as was done in [26], but instead the performance of one vehicle at its 

maximum velocity for hundreds of different sized engines. This approach was taken to 

explore the potential design space of a theoretical LTA vehicle in order to determine a 

suitable maximum velocity. At the top right of the solid and dashed curves the airship has 
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an engine so big it can not carry any payload in addition to the required fuel and engine, 

at the bottom left an engine so small it can only propel the vehicle at 10 kts. The solid and 

dashed curves are meant to represent the limit of what can be expected from an airship 

with suction type BLC that is completely optimized for a given volume for weight, drag, 

and propulsion efficiency. This shows that the larger the airship, the more efficient it 

becomes. It also shows how the ideal airship compares to other modes of transportation. 

Notice that the von Karman efficiency of the Zeppelin NT is shown in Figure 9. The 

potential improvement between the Zeppelin NT and the idealized BLC airship with a 

volume equal to the Zeppelin NT is enormous. The actual Zeppelin NT has an external 

gondola, fin mounted propellers, and no BLC. It cannot be reasonably expected that an 

actual vehicle will perform as well as the solid and dashed curves. Instead these curves 

are meant to represent the limit of conventional airship technology. The usefulness of the 

curves is that they show the advantage of designing airships for low velocities, the cost of 

higher velocities, and the upper limit of design velocities. This limit shows that above 

certain design velocities an increase in engine power only serves to decrease efficiency.  

Von Karman efficiency was calculated for the idealized airships in Figure 9 using 

Equations  (4) -  (11). The assumptions used for these calculations are listed in Table 3. 

The payload weight is used in equation (2) and calculated using equation (4). The 

payload weight is the buoyant force of the airship minus the weight of the structure, 

engine, and fuel. Equations (6) [13, pp. 225-226] and (7) [25, p. 233] give the engine and 

fuel mass which are based on the power requirements of equation (8) [25, p. 238]. Engine 

mass in equation (6) is based on average specific power of conventional aircraft turbine 

engines after they have been installed on the aircraft. Power is a function of volume and 
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velocity. The plots of von Karman efficiency vs. velocity were made possible by solving 

for power required and maximum payload weight as functions of velocity for a given 

mission range. It was important to select a mission range because this determined how 

much fuel needed to be carried, which affected the payload capacity. Ranges in this case 

were based on the C-27J in order to make a comparison between C-27J capabilities and 

conceptual aircraft designs. The drag of an airship as shown in equation (9) is based on 

the volumetric drag coefficient.  It is a function of airship volume instead of frontal area 

[27, p. 4] making the assumption that airships have the classical prolate spheroid shape. 

The volume of an airship, which makes the same basic shape assumptions as equation 

(9), is shown in equation (10) and is a function of fineness ratio 𝜆.  

𝑊 = 𝐿𝑏 − 𝑔 ∙ (𝑚𝑠 + 𝑚𝑒 + 𝑚𝑓) 

 

 (4) 

 

𝐿𝑏 = 𝑉 ∙ �𝜌𝑎𝑖𝑟 − 𝜌𝑙𝑔� ∙ 𝑔 

 

 (5) 

 

me = Ptot ∙ 0.00201 
kg

watt
 

 

(6) 

 

mf = range ∙
Px

kee ∙ ux ∙ ζ
 

 

(7) 

 

Px = kpe ∙
D2

2 ∙ ρair ∙ ap ∙ u∞
 

 

(8) 
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D =
1
2
∙ ρair ∙ u∞2 ∙ V

2
3 ∙ CD 

 

 (9) 

 

𝑉 =
4
3
∙ 𝜋 ∙ 𝑟3 ∙ 𝜆 

 

 (10) 

 

𝜆 =
𝑙

2 ∙ 𝑟
 

   

 

 (11) 

 

Where: 
𝑎𝑝 = propeller area 
𝐶𝐷 = Volumetric Drag Coef�icient 
𝐷 = drag force 
𝑘𝑒𝑒 = 1/engine ef�iciency 
𝑘𝑝𝑒 = 1/propeller ef�iciency 
𝑙 = length 
𝐿𝑏 = buoyant force 
𝑚𝑒 = engine mass 
𝑚𝑓 = fuel mass 
𝑃𝑥 = power required to maintain translational velocity 
𝑟 = radius 
𝑉 = volume of airship 
𝑊 = useful load assuming W/B=0.3 
ζ = energy density of fuel 
𝜆 = �ineness ratio 
𝜌𝑎𝑖𝑟 = density of air 
𝜌𝑙𝑔 = density of lifting gas 

 

 

Table 3:  BLC LTA Vehicle Assumptions 

𝑎𝑝 = 12.5 m2 Zeppelin NT sized airship [15] 
𝑎𝑝 = 56 m2 size required to carry 10,000kg, to 10k ft, 1852 km 
𝐶𝐷 = 0.0169 based on hull plus tail fins [24] 
𝑘𝑒𝑒 = 0.33 33% efficient turboshaft engines [13, p. 105] 
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𝑘𝑝𝑒 =
1

0.85
assuming stern mounted suction slot and ducted fan [24] 

r = 9.3, m Zeppelin NT sized airship [15] 
r = 19.5, m size required to carry 10,000kg, to 10k ft, 1852 km  
𝑣 = 8,297 𝑚3volume of Zeppelin NT [15] 
𝑣 = 77,956 𝑚3 size required to carry 10,000kg, to 10k ft, 1852 km  
𝑚𝑠 = 30% of Lb

g
assuming W/B = 0.3 [15] 

𝜆 = 2.5 based on Griffith Airfoil [24] 
𝜌𝑎𝑖𝑟 = 0.889 kg/m3 at 10k ft MSL standard atmosphere [28] 

2.3 Thin Shelled Sphere 

LTA structures are traditionally composed of thin membranes filled with a lifting 

gas. If the density of the lifting gas, 𝜌𝑙𝑔, is less than the density of the air it displaces, 

𝜌𝑎𝑖𝑟, the lifting gas is said to have positive buoyancy. If the buoyant force, 𝐿𝑏, of an 

object as calculated by equation (5) [8, p. 15], is greater than the weight of that object, 

then the object is said to have positive buoyancy. In order to build a LTA vehicle, the 

weight of the structure, to include fuel and engines, must be less than 𝐿𝑏 as shown in 

equation (4), otherwise the vehicle will not have positive buoyancy. The dominant weight 

in equation (4) is due to the mass of the structure, ms. The design of a vacuum LTA 

structure is primarily concerned with reducing the weight of the structure as far below 𝐿𝑏 

as possible. In order to determine ms, the geometric and material properties of the 

structure must be evaluated such as geometric stability and material failure.     

A vacuum LTA structure is one in which a partial vacuum is used instead of a 

lifting gas. Considering equation (5), the density of the lifting gas would be determined 

by the ideal gas law,  (12) [1].  
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𝜌𝑙𝑔 =
𝑝𝑙𝑔
𝑅 ∙ 𝑇

 
 

 (12) 

 
Where: 
𝑅 = specific gas constant 
T= temperature 
 𝑝𝑙𝑔 = lifting gas pressure 
 

 

As lifting gas pressure plg approaches zero, lifting gas density 𝜌𝑙𝑔 also approaches 

zero. The pressure of the lifting gas in a traditional LTA structure is generally greater 

than the ambient air pressure [13, pp. 160-170]. This results in skin tension which adds 

stability to the structure. The reverse is true in the case of a structure that contains a 

vacuum. In this case the external pressure on the structure places the skin under 

compression, which destabilizes the structure. Structural failure, in the case of an 

externally loaded thin shell, can occur in two ways. Buckling is the first, and exceeding 

the material elastic limit is the second. 

Buckling is defined as an inordinately large displacement under conditions of 

unstable equilibrium [4, p. 134].  A thin shell in compression is a condition of unstable 

equilibrium because the shell has the potential to snap through locally as shown in Figure 

10 [29]. Figure 10 has multiple regions of local buckling instead of one large region due 

to artificial stability provided by a solid internal mandrel. After buckling, a structure will 

continue to displace under lower loads than the critical load at which buckling first 

occurred. If buckling occurs there will be two primary consequences. One is material 

failure, to be discussed subsequently. The other is decreased internal volume, which will 

reduce buoyancy. This buoyancy reduction can be sudden if buckling occurs and could 
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result in instant loss of positive buoyancy. Therefore the structure must avoid buckling if 

it is to continue to accomplish its mission. 

 

Figure 10: Buckled Sphere [29] 

 

 

The critical buckling pressure pcrit of a homogeneous, thin walled, sphere under 

uniform external pressure, is shown in equation (13) [30, p. 5] which is based on classical 

buckling theory. In practice a knockdown factor is used in conjunction with equation (13) 

to match experimental results. This is necessary because any deviation from a perfect 

sphere, as shown in Figure 11 [30, p. 11], results in a lower 𝑝𝑐𝑟𝑖𝑡 than theory predicts. 

Figure 11 [30, p. 11] shows the knockdown factor for the buckling pressure of a prolate 

spheroid plotted against fineness ratio. A prolate spheroid is a body of revolution similar 

in shape to a blimp in which one axis of the spheroid is longer than the other, and the 
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long axis is the axis of revolution. An absolutely perfect sphere would match classical 

buckling theory, but even minor deviations cause a rapid drop off in 𝑝𝑐𝑟𝑖𝑡 as shown in 

Figure 11. Classical buckling theory was also used in equation (14) [4, p. 1292], but with 

the addition of an empirical knockdown factor of about 0.7 that gives a more 

conservative prediction of 𝑝𝑐𝑟𝑖𝑡. A knockdown factor of 0.7 was recommended by 

Krenzke [31, p. 14] after experimental analysis of near perfect spherical caps gave a 

knockdown factor of 0.73 and 0.9 of that predicted by classical theory [31, p. 9]. 

𝑝𝑐𝑟𝑖𝑡 = 2 ∙
E

�3(1 − 𝜐2)
∙ �
𝑡𝑠𝑘𝑖𝑛𝑠
𝑟𝑠

�
2
 

 

 (13) 

 

𝑝𝑐𝑟𝑖𝑡 = 0.8 ∙
E

√1 − 𝜐2
∙ �
𝑡𝑠𝑘𝑖𝑛𝑠
𝑟𝑠

�
2
 

 

 (14) 

 

Where: 
E = Young’s Modulus of Elasticity 
𝑡𝑠𝑘𝑖𝑛𝑠 = sphere skin thickness 
𝑝𝑐𝑟𝑖𝑡 = critical pressure 
𝑟𝑠 = sphere radius 
𝜐 = Poisson’s Ratio  
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Figure 11: Prolate Sphere [30] 

 

 

The second way in which structural failure can occur is when the elastic limit of a 

material is exceeded. In order to ensure a sphere will not collapse due to material failure, 

equation (15) [4, p. 124] must also be satisfied. This was derived by setting the 

compressive yield strength of the sphere equal to the load divided by the cross sectional 

area as shown in equation (16).  
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𝑝𝑐𝑟𝑖𝑡 ≈
2 ∙ σcy ∙ 𝑡𝑠𝑘𝑖𝑛𝑠

𝑟𝑠
 

 

 (15) 

 

σcy =
𝑝𝑐𝑟𝑖𝑡 ∙ 𝑎𝑐𝑖𝑟𝑐
𝑎𝑠𝑘𝑖𝑛

 

 

(16) 

 

𝑎𝑐𝑖𝑟𝑐 = 𝜋 ∙ (𝑟𝑠 + 𝑡𝑠𝑘𝑖𝑛𝑠)2 ≈ 𝜋 ∙ 𝑟𝑠2 

 

 (17) 

 

𝑎𝑠𝑘𝑖𝑛 = 2 ∙ 𝜋 ∙ 𝑟𝑠 ∙ 𝑡𝑠𝑘𝑖𝑛𝑠 

 

 (18) 

 

Where: 
𝑎𝑐𝑖𝑟𝑐 = cross sectional area of great circle of sphere 
𝑎𝑠𝑘𝑖𝑛 = cross sectional area of sphere skin 
σcy = material compressive yield strength 
 

 

A sphere that can achieve positive buoyancy using a vacuum must have a mass 

less than the air it displaces, and satisfy the thickness and material property requirements 

of equations (14) and (15). The mass of a spherical, homogeneous structure can be 

determined by multiplying the density of the skin by the volume of its skin. Equation (19) 

gives the mass of a spherical structure and is the area of a sphere multiplied by its 

thickness and density. 

𝑚𝑠 = 𝜌𝑠 ∙ 𝑡𝑠𝑘𝑖𝑛 ∙ 𝑎𝑠 

 

 (19) 
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𝑎𝑠 = 4 ∙ 𝜋 ∙ 𝑟2 

 

 (20) 

 

Where: 
𝑎𝑠 = surface area of spehre 
𝑚𝑠= mass of structure 
𝑡𝑠𝑘𝑖𝑛 = skin thickness 
𝜌𝑠 = density of sphere wall 
 

 

The volume of a sphere is shown in equation (21) [5]. Inequality (22) is based on a 

combination of equations  (14),  (19), and  (21), by setting the W/B≤1. This gives the 

required material properties for a homogeneous, thin walled sphere to achieve positive 

buoyancy in air. 

𝑣𝑠 =
4
3
∙ 𝜋 ∙ 𝑟𝑠3 

 

 (21) 

 

𝐸
𝜌𝑠2

≥ 11.25 ∙ 𝑝𝑎𝑖𝑟 ∙
√1 − 𝜈2

𝜌𝑎𝑖𝑟2
 

 

 (22) 

 

𝐸
𝜌𝑠2

≥ 7.25 ∙ 105
𝑃𝑎

�𝑘𝑔𝑚3�
2 

 

 (23) 

 

By assuming standard atmosphere at sea level and 𝜈 = 0.3, inequality (22) reduces to 

inequality (23) [32] which can be used to determine whether a material would be capable 

of achieving positive buoyancy using a vacuum at sea level. The value in inequality (23) 

is stiffness over density squared, which shows that the desired material properties for a 

thin shelled sphere are a low density and a high stiffness. The same approach was taken 
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in [5] where the value of inequality (23) was found to be 4.5 ∙ 105. This is less 

conservative than the value in inequality (23) due to the use of the classical buckling 

theory without a knockdown factor as shown in equation (13).  

A survey of published material properties indicated that there was no material 

available that meets the requirements of inequality (23). The material properties of two 

materials, where the fourth column is the left side of inequality (23), are shown in Table 

4. The pitch based fiber represents the highest specific stiffness composite material, and 

beryllium the highest specific stiffness isotropic material available on open source 

material data bases such as Matweb [33]. As Table 4 shows, neither material achieves a 

specific modulus high enough to satisfy the requirements of inequality (23). There are 

two rows devoted to Dupont E-130-X Pitch Based UHM Carbon Fiber. The first shows 

the longitudinal stiffness for unidirectional fiber. Isotropic properties are assumed for 

equation (14), so the fiber stiffness cannot be used directly. A [(0/±45/90)]s ply has 

quasi-isotropic properties but the effective stiffness is about 38% of the unidirectional 

composite axial stiffness [34, p. 143]. This value was calculated using laminate theory 

which was beyond the scope of this study. However, a simple estimation approach is 

often used for aerospace applications that gives nearly identical results to laminate 

theory. This method uses the rule of mixtures and reinforcing efficiency as described in 

[35]. The rule of mixtures states that the stiffness of the composite material is equal to the 

combined stiffness of the fibers and matrix times their respective volume fractions as 

shown in equation (24). Volume fraction is the fraction of the total volume of the 

composite composed of either fiber (𝑉𝑓) or matrix (𝑉𝑚). In the case of carbon epoxy the 

carbon fibers can make up as much as 60% of the composite volume, resulting in a 
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𝑉𝑓 = 0.6 and a 𝑉𝑚 = 0.4. The fiber reinforcing efficiency, 𝜂𝜃, is based on the angle of 

fibers and their volumetric portion of total fiber content as shown in equation (25). For a 

[(0/±45/90)]s ply, which gives 𝜂𝜃 = 0.375 according to equation (25), with fiber 

stiffness 𝐸𝑓 = 895 GPa, and matrix stiffness 𝐸𝑚 = 3.5 GPa at 𝑉𝑓 = 0.6, equation (29) 

gives a composite stiffness of 𝐸𝑐 = 0.375 ∙ 895 ∙ 0.6 + 3.5 ∙ 0.4 = 202 GPa. This value 

is reflected in the second row of Table 4. As a point of comparison to laminate theory as 

used in [34], which gave a quasi-isotropic stiffness of 38.2% of the unidirectional 

stiffness, the quasi-isotrpoic stiffness calculated using equations (24) and (25) of 202 G 

Pa was 27.5% of the uniderectional composite stiffness of 538 GPa. 

𝐸𝑐 = 𝜂𝜃𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚 

 

(24) 

 

𝜂𝜃 = �𝑎𝑛 ∙ cos4 𝜃
𝑛

1

 

 

(25) 

 

Where: 
𝑎𝑛 = proportion of total �iber content 
𝐸𝑐= composite stiffness 
𝐸𝑓= fiber stiffness in fiber direction 
𝐸𝑚= matrix stiffness 
𝑉𝑚 = volume fraction of matrix 
𝑉𝑓 = volume fraction of �iber 
𝜂𝜃 = Krenchel ef�iciency factor 
𝜃 = angle of �ibers 
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Table 4:  Material Properties-Monocoque Shell 

Material from 
Matweb E, Pa 

𝛒𝐬, 
𝒌𝒈
𝒎𝟑 

𝐄
𝛒𝐬𝟐

 

 
Smooth  
Sphere 

W/B 
 

Comments 

 
Dupont E-130-X 

Pitch Based UHM 
Carbon Fiber 

 

895 ∙ 109 2130    

[(0/±45/90)2]s 
 202 ∙ 109 1522 8.7 ∙ 104 3.5 Composite 

 
Beryllium SR-200 

 
303 ∙ 109 1840 8.9 ∙ 104 3.6 Isotropic 

metal 

 

The [(0/±45/90)]s ply was chosen because it is quasi-isotropic. This means that in 

the plane of the laminate it gives equal material properties in every direction. The 

stiffness of composites made of Dupont E-130-X carbon fiber for various angles with 

respect to the axial direction as calculated by equations (29) and (30) are shown in Figure 

12. These curves show that a unidirectional laminate is very stiff in the axial direction, 

but the quickness quickly drops off at other orientations. If a unidirectional laminate, or 

even a [0/90]s ply were used to construct a sphere there would be directions of high 

stiffness and directions of low stiffness that would invalidate the assumptions of equation 

(14).  
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Figure 12: Laminate Stiffness as a Function of Orientation 

 

 

Spheres under external pressure may fail at much less than the critical pressure of 

a perfect sphere, or even less than the knockdown factor of 0.7 [31, p. 1]. Geometric 

stiffeners and increased thickness help reduce this imperfection sensitivity [29]. 

Considering that no materials can enable a thin shelled sphere to achieve positive 

buoyancy, and that even what can be achieved is highly susceptible to small 

imperfections, another method is required to accomplish the goals of this thesis. For this 

reason geometry became the dominant factor in the search for a structure that could 

achieve positive buoyancy in air using a vacuum.  
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2.4 Isogrid 

Grid stiffened structures consist of a thin skin, as in the thin shelled sphere 

evaluated above, with a grid of stiffeners attached to the skin. If the grid is arranged in 

such a way that the stiffening ribs transmit forces equally in all directions tangent to the 

skin, it is called an isogrid. An isogrid structure can be treated as an isotropic material 

which enables the use of isotropic equations such as equation (14) [36, p. 2.0.001]. The 

grid is generally arranged in equilateral triangles.  When applied to a spherical surface 

they can be arranged in the form of a geodesic sphere as shown in Figure 13. 

Figure 13: Grid Stiffened Sphere, f=10 

 
 

2.5 Geodesic Sphere 

Geodesic spheres are geometric shapes that approximate a sphere using straight 

lines along the great circles of a sphere as shown in Figure 13. Buckminster Fuller was 

granted a patent for his geodesic dome design on 12 Dec 1951 [37]. In his patent, Fuller 
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described a geodesic sphere based on a 20 sided polyhedron called an icosahedron. The 

icosahedron, shown in Figure 14, is a polyhedron composed of 20 equilateral triangles in 

which each vertex lies on the surface of an imaginary sphere (shown as dashed circle). 

Each face of the icosahedron is referred to as a major triangle. To form more complex 

geometric structures that more closely approximate a sphere, the major triangles are 

subdivided into smaller triangles. The vertices of the minor triangles that subdivide the 

major triangles also lie on the surface of the sphere that circumscribes the vertices of the 

original icosahedron. The number of divisions along one edge of each major triangle is 

referred to as geometric frequency (f). A geodesic sphere with f=2 is one in which the 

edges of each major triangle are divided into two as shown in Figure 15. An increase in f 

results in increasingly more complex structures. Note that increasing f beyond 1 results in 

a geodesic structure composed entirely of irregular triangles, whereas the original 

icosahedron is entirely composed of equal sized equilateral triangles. This point becomes 

important when evaluating loading of the geodesic sphere, because there is perfect 

symmetry in an icosahedron, but not on more complex geodesic spheres.  
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Figure 14: Geodesic Sphere f=1 (Icosahedron) 

 
 

 
Figure 15: Geodesic Sphere f=2 

 
A Matlab program titled LTAgeod.m, Appendix A.4, was used to create Figure 

13, Figure 14, and Figure 15. This program generated the geodesic sphere geometry by 
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starting with an icosahedron and subdividing each major triangle according to f. All 

coordinates were generated in spherical coordinates, but later converted to cartesian for 

use in a Finite Element Analysis (FEA) program. Spherical coordinates are defined in the 

Matlab sph2cart.m help file according to Figure 16 [38], and are composed of 𝜃,𝜙, and 𝑟.  

A point in spherical coordinates is defined by a vector that has length r, and direction 

defined by 𝜃 and 𝜙. The angle 𝜃 is measured counterclockwise in the xy cartesian plane 

from the x axis to the position vector. The angle 𝜙 is measured between the position 

vector and the xy cartesian plane as shown in Figure 16.   

 

Figure 16: Spherical to Cartesian Conversion in Matlab [38] 

 
The spherical coordinates for the vertices of an icosahedron with center at the 

origin are listed in Table 5. Every vertex of an icosahdron lies on the surface of an 

imaginary sphere. By placing the center of the sphere at the origin, the coordinates of 

every point on the surface of the sphere, to include the vertices of the icosahedron, are at 

𝑟 = 𝑟𝑠.  
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Table 5:  Icosahedron Vertex Locations 
Point 𝜃 (radians) 𝜙 (radians) r (meters) 

1 0 𝜋/2 𝑟𝑠 
2 0 0.464 𝑟𝑠 
3 2𝜋/5 0.464 𝑟𝑠 
4 4𝜋/5 0.464 𝑟𝑠 
5 6𝜋/5 0.464 𝑟𝑠 
6 8𝜋/5 0.464 𝑟𝑠 
7 𝜋/5 -0.464 𝑟𝑠 
8 3𝜋/5 -0.464 𝑟𝑠 
9 𝜋 -0.464 𝑟𝑠 
10 7𝜋/5 -0.464 𝑟𝑠 
11 9𝜋/5 -0.464 𝑟𝑠 
12 0 - 𝜋/2 𝑟𝑠 

 

The coordinates in Table 5 were derived with the knowledge that an icosahedron 

is composed of 20 equilateral triangles with vertices circumscribed by a sphere. The 

center of the icosahedron was placed at the origin with the z axis going through the top 

and bottom vertices. Thus the top and bottom vertices are defined by 𝜙=± 𝜋
2
 and 𝜃 = 0. 

The rest of the vertices lie on one of two planes equidistant from the xy cartesian plane, 

each plane containing 5 points of constant 𝜙 that make up a pentagon. The top plane is 

positive 𝜙, the bottom plane is negative 𝜙. Therefore 𝜙  only has to be calculated once. 

The complete mathematical derivation for an icosahedron was beyond the scope of this 

thesis, however starting from the relationship between the length of the edge of a major 

triangle (a), and the radius of the circle (rs) as shown in (26) [39], the derivation of 𝜙 was 

fairly straight forward. By cutting an icosahedron in half using a plane on the z axis that 

passed through a vertex on the top pentagon as shown in Figure 17, the angle 𝜙  for the 

points on the top and bottom pentagon were determined. The two dimensional view of 

the cut icosahedron is shown in Figure 18. The angle 𝜙 can be found using the triangle 
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formed between two vertices of the icosahedron and the origin. This triangle has two legs 

of length 𝑟𝑠 and one leg of length a as shown in Figure 18. The angle opposite the leg of 

length a was determined by the law of cosines as shown in equation (27) [40], and came 

out to be cos−1 �√5
5
� ≅ 1.107. Therefore, 𝜙 = 𝜋

2
− 1.107 ≅ 0.464.  

𝑟 = 𝑎 ∙ sin
2𝜋
5

 

 

 (26) 

 

𝑙𝑒𝑔12 = 𝑙𝑒𝑔22 + 𝑙𝑒𝑔32 − 2 ∙ 𝑙𝑒𝑔2 ∙ 𝑙𝑒𝑔3 ∙ cos(𝑎𝑛𝑔𝑙𝑒1) 

 

 (27) 
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Figure 17: Icosahedron-Cutting 

 

 

Figure 18: Icosahedron-Cut 
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The angle 𝜃 was easier to calculate. Looking at the icosahedron from top down, as 

in Figure 24, it is apparent that each pentagon divides the circle into five equal angles. 

Therefore, 𝜃 comes in multiples of 2 ∙ 𝜋/5. The first vertex on the top pentagon is placed 

on the x axis so that 𝜃 = 0. The following vertices on the top pentagon are at 𝜃 = 2 ∙ 𝜋/

5, 𝜃 = 4 ∙ 𝜋/5, 𝜃 = 6 ∙ 𝜋/5 and so on for each of the five vertices on the top pentagon. 

The top and bottom pentagon are offset from each other so that each angle on the bottom 

pentagon bisects the two closest angles on the top pentagon as shown in Figure 19. 

Therefore 𝜃 on the bottom pentagon starts at 𝜃 = 𝜋/5 and increases by increments of 

2 ∙ 𝜋/5 for each subsequent vertex. 

Figure 19: Icosahedron-Top View 

 

 

The number of vertices (𝑛𝑣), edges (𝑛𝑒), and triangular faces (𝑛𝑡) of a geodesic 
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structure as a function of f are calculated using equations (28) -  (30) [41]. An 

icosahedron has an f=1, which gives 12 vertices, 30 edges, and 20 triangles using 

equations (28) - (30). These equations show that as f increases, the complexity of a sphere 

increases significantly. The number of vertices, edges, and triangles were used to check 

the program LTAgeod.m, Appendix A.4 for accuracy, and for weight calculations when 

solving for W/B.  

𝑛𝑣 = 10 ∙ 𝑓2 + 2 

 

 (28) 

 

𝑛𝑡 = 20 ∙ 𝑓2 

 

 (29) 

 

𝑛𝑒 = 30 ∙ 𝑓2 

 

 (30) 

 

2.6 Summary 

A literature review was conducted that covered each of the elements required to 

evaluate a vacuum LTA vehicle. These elements included general LTA vehicle aspects as 

they pertained to the problem of constructing a vacuum LTA vehicle. These included 

historical structures, missions, and potential areas for improving on historical designs. 

Thin shelled spheres were examined which showed the critical material properties for 

building a vacuum LTA structure, as well as demonstrated the need for geometric 
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methods of preventing buckling. Isogrid stiffened spheres and geodesic geometry were 

introduced as possible methods of preventing buckling without adding significant weight. 

III.  Methodology 

3.1 Chapter Overview 

This chapter introduces the rotating cylinder LTA vehicle concept and the 

methods used to evaluate its feasibility. These include buoyancy, weight, aerodynamics, 

power requirements, and engine and fuel weight. Also explained are the equations from 

the NASA Isogrid Handbook [36] and the equations and methods behind the programs 

used to optimize the geodesic sphere.  

3.2 Rotating Cylinder Vacuum LTA Vehicle Concept 

A preliminary investigation into the feasibility of constructing a thin shelled, 

unreinforced structure that achieved positive buoyancy in air using a vacuum, showed 

that there was no material in existence by which such a structure could be formed. 

Therefore, it became apparent that the structure would need to be stiffened geometrically 

or by some other means. One method of stiffening the structure was inspired by 

helicopter rotor blades. Helicopter blades are highly flexible and free to flap vertically 

due to a pinned-free boundary condition, but due to high rotational velocity they become 

resistant to vertical movement and can support great loads. This same concept was 

applied to the vacuum structure by investigating long cylinders rotated about their axis of 

symmetry. If these cylinders were rotated at a sufficient velocity, the centripetal force 

exerted by the skin would produce a hoop tensile stress that would counteract the hoop 
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compressive stress in the skin produced by atmospheric pressure. To put this simply, 

resisting atmospheric pressure pushes the skin towards the center while inertia pulls the 

skin away from the center. The assumption was made that dynamic effects would not 

interfere with the balance between inertial and pressure forces. This assumption would 

need to be verified through simulation or experiment, but it allowed energetic evaluation 

of the rotating cylinder idea. If the rotating cylinder proved energetically feasible, the 

next logical step would be to evaluate the dynamic effects of rotating a long, slender 

cylinder. Assuming perfect balance between all radial forces, energy requirements were 

evaluated based on drag torque, bearing friction, turbine engine efficiency, propeller 

efficiency, and power required to overcome translational drag.  

A theoretical vehicle, Figure 20, was proposed that consisted of two counter-

rotating cylinders mounted vertically above a gondola. The gondola would have two 

propellers capable of thrust vectoring. At the top of the counter-rotating cylinders would 

be a third propeller which would be used to trim the vehicle to keep the rotating cylinders 

perpendicular to the airflow. The buoyancy, weight, aerodynamic, and power 

characteristics of this vehicle were evaluated to determine whether it was a feasible 

concept. This vehicle concept was called the Rotating Cylinder, Vacuum LTA Vehicle 

(RCVLTAV). Each cylinder was proposed to be a smooth, thin shelled structure with 

spherical end-caps similar to commercial pressure vessels designed to contain 

compressed gas. 
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Figure 20: Rotating Cylinder Vehicle 

 
 

3.2.1 Buoyancy and Weight 

The buoyant force of the theoretical structure was determined using equation (31) 

by calculating the volume of each cylinder with equation (32) [42], and the volume of the 

spherical end-caps with equation (33) [42]. Both cylinders were designed to be of equal 

dimensions. The buoyant force of a cylinder with spherical end-caps is the mass of air 

displaced by the cylinder and end-caps as shown in equation (31).  

𝐿𝑏𝑐 = 𝑔 ∙ 𝜌𝑎𝑖𝑟 ∙ (𝑣𝑐 + 𝑣𝑠) 

 

 (31) 
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𝑣𝑐 = 𝜋 ∙ 𝑙𝑐 ∙ 𝑟𝑐2 

 

 (32) 

 

𝑣𝑠 =
4
3
∙ 𝜋 ∙ 𝑟𝑐3 

 

 (33) 

 

𝐿𝑏𝑐 = buoyant force of cylinder with spherical endcaps 
𝑣𝑐=cylinder volume 
𝑣𝑠=spherical endcap volume 

 

 

After calculating the buoyancy of a given set of cylinders, the thickness of the 

cylinder walls was determined based on equation (34) which was derived from equations  

(35) - (37) [4]. These equations prevent buckling of the cylinder due to the axial load on 

the cylinder caused by atmospheric pressure on the spherical end-caps as depicted in 

Figure 21. The axial force on a cylinder due to pressure on the spherical end-caps minus 

the buoyant force is shown in equation (35). The reason the buoyant force is subtracted 

from the axial load is that the payload of the cylinder hangs from one end, thus placing 

the cylinder in tension by an amount equal to the buoyant force. Equation (36) is the 

equation for the buckling end load of a hollow, cylindrical column with free-free 

boundary conditions. Using the end-load calculated in equation (35), the required 

thickness for the cylinder was found using equations (36) and (37) [4, p. 1296]. The 

symbolic solution to these equations is shown as equation (34). The compressive yield 

stress of the cylinder material was compared to equation (38) [4]. Cylinder skin 

thickness, 𝑡𝑠𝑘𝑖𝑛𝑐, was chosen to satisfy both equations (34) and  (38). End-cap thickness, 
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𝑡𝑠𝑘𝑖𝑛𝑠, was chosen to satisfy equation (14). Material properties were based on UHM 

carbon epoxy as shown in Table 7. 

𝑡𝑠𝑘𝑖𝑛𝑐 = ��
64 ∙ 𝑟𝑐6

27
+

4 ∙ 𝐹𝑎2 ∙ 𝑙𝑐
4

𝝅6 ∙ 𝐸2 ∙ 𝑟𝑐2
+

2 ∙ 𝐹𝑎 ∙ 𝑙𝑐
2

𝝅3 ∙ 𝐸 ∙ 𝑟𝑐
�

1
3

+ �−�
64 ∙ 𝑟𝑐6

27
+

4 ∙ 𝐹𝑎2 ∙ 𝑙𝑐
4

𝝅6 ∙ 𝐸2 ∙ 𝑟𝑐2
+

2 ∙ 𝐹𝑎 ∙ 𝑙𝑐
2

𝝅3 ∙ 𝐸 ∙ 𝑟𝑐
�

1
3

 

 

 (34) 

 

𝐹𝑎 = 𝑝𝑎𝑡𝑚 ∙ 𝜋 ∙ 𝑟𝑐2 − 𝐿𝑏𝑐 

 

 (35) 

 

𝐹𝑎 =
𝜋2 ∙ 𝐸 ∙ 𝐼
𝑙𝑐
2  

 

 (36) 

 

𝐼 = 𝜋 ∙ �𝑟𝑐 ∙
𝑡𝑠𝑘𝑖𝑛3

4
+ 𝑡𝑠𝑘𝑖𝑛𝑐 ∙ 𝑟𝑐

3� 

 

 (37) 

 

𝜎𝑎 =
𝐹𝑎

2 ∙ 𝜋 ∙ 𝑟𝑐 ∙ 𝑡𝑠𝑘𝑖𝑛𝑐
 

 

 (38) 

 

Where: 
𝐹𝑎 = axial force on cylinder 
𝑟𝑐 = cylinder radius 
𝑣𝑐 = cylinder volume 
𝑚𝑐 = cylinder mass 
𝑙𝑐 = cylinder length 
𝑡𝑠𝑘𝑖𝑛𝑐 = cylinder skin thickness 
𝑡𝑠𝑘𝑖𝑛𝑠 = sphere skin thickness 
𝜎𝑎 = axial stress 
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Figure 21: Rotating Cylinder Loads 

 
 

After determining 𝑡𝑠𝑘𝑖𝑛𝑐 and tskins, it was possible to calculate the mass of each 

cylinder using equation (39) where the area of the cylinder and spherical end-caps were 

calculated with equations (40) and (41) [42]. The assumption was made in equation (39) 

that there was an absolute vacuum inside of each cylinder. This assumption provided 

reasonable results, even though an absolute vacuum can not be practically achieved. A 

very low pressure, such as 10 tor, would result in negligible weight and pressure 

differences. The final assumption was the basic premise behind the RCVLTAV. Structure 

walls were assumed to be able to withstand external pressure due to rotational velocity 

alone. 
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𝑚𝑐 = 𝜌𝑠𝑘𝑖𝑛 ∙ (𝑡𝑠𝑘𝑖𝑛𝑐 ∙ 𝑎𝑐 + 𝑡𝑠𝑘𝑖𝑛𝑠 ∙ 𝑎𝑠) 

 

 (39) 

 

𝑎𝑐 = 2 ∙ 𝜋 ∙ 𝑟𝑐 ∙ 𝑙𝑐 

 

 (40) 

 

𝑎𝑠 = 4 ∙ 𝜋 ∙ 𝑟𝑐2 

 

 (41) 

 

Where: 
𝑎𝑐 = cylinder area 
𝑎𝑠 = spherical endcap area 
𝑚𝑐 = cylinder mass 

 

 

The inertial properties of the cylinder walls were based on 𝑡𝑠𝑘𝑖𝑛𝑐  and 𝜌𝑠𝑘𝑖𝑛, which 

enabled calculation of the required rotational velocity using equation (45). This equation 

was derived using equations  (42) - (44). The total force due to atmospheric pressure (𝐹𝑝) 

was calculated using equation (42) by multiplying the surface area of the cylinder by 

𝑝𝑎𝑡𝑚. Centripetal force due to rotational velocity, was used to determine the required 

rotational velocity (𝜔) for 𝐹𝑐 to equal 𝐹𝑝 using equation (43) [43]. The cylinder mass was 

calculated using the surface area of a cylinder times the skin thickness and density as 

shown in equation (48). The derivation of equation (45) was accomplished by 

substituting the right side of equation (43) for  𝐹𝑝 in equation  (42). The buckling pressure 

(𝑝𝑐𝑟) of the stationary cylinder was calculated using equations  (46) -  (50), [4, p. 1299]. 

The derivation of equations  (46) -  (50) are beyond the scope of this study, but can be 
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found in [44]. The amount of pressure that had to be countered using 𝐹𝑐 was reduced by 

𝑝𝑐𝑟 from equation (45). It turned out that at thickness that allowed a W/B<1, 𝑝𝑎𝑡𝑚 was 

about four orders of magnitude greater than 𝑝𝑐𝑟. Because of this the effect of increasing 

thickness was negligible and the centripetal force 𝐹𝑐 was necessary to counteract 

practically the entire load due to 𝑝𝑎𝑡𝑚. 

𝐹𝑝 = 2 ∙ 𝜋 ∙ 𝑟𝑐 ∙ 𝑙𝑐 ∙ 𝑝𝑎𝑡𝑚 

 

 (42) 

 

𝐹𝑐 = 𝑚𝑐 ∙ 𝑟𝑐 ∙ 𝜔2 

 

 (43) 

 

𝑚𝑐 = 2 ∙ 𝜋 ∙ 𝑟𝑐 ∙ 𝑙𝑐 ∙ 𝑡𝑠𝑘𝑖𝑛𝑐 ∙ 𝜌𝑠𝑘𝑖𝑛 

 

 (44) 

 

𝜔 = �
𝑝𝑎𝑡𝑚 − 𝑝𝑐𝑟

𝑟𝑐 ∙ 𝑡𝑠𝑘𝑖𝑛𝑐 ∙ 𝜌𝑠𝑘𝑖𝑛
 

 

 (45) 

 

𝑝𝑐𝑟 = 𝜎𝑐𝑟
𝑡𝑠𝑘𝑖𝑛𝑐
𝑟𝑐

 

 

 (46) 

 

𝜎𝑐𝑟  =
𝐾𝑐𝜋2𝐸

12(1 – 𝜈2) �
𝑡𝑠𝑘𝑖𝑛𝑐
𝑙𝑐

�
2

  

 

 (47) 
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𝐾𝑐 = 10𝐾 

 

 (48) 

 

𝐾 = 0.6337 − 0.1455 ∙ log3 𝑧 − 0.01915 ∙ log3 𝑧 

 

 (49) 

 

𝑧 =
𝑙𝑐2

𝑟𝑐 ∙ 𝑡𝑠𝑘𝑖𝑛𝑐
∙ �1 − 𝜈2 

 

 (50) 

 

Where: 
𝑎𝑠 = spherical endcap area 
𝐹𝑐 = centripetal force 
𝐹𝑝 = force due to atmospheric pressure 
𝑝𝑐𝑟 = critical pressure 
𝜎𝑟 = radial stress due to external pressure 
𝜔 = rotational velocity 

 

 

3.2.2 Aerodynamics 

The cross section of a pair of infinitely long counter rotating cylinders with 

streamlines flowing past them from left to right is shown in Figure 22 [45, p. 13]. The 

streamlines on the left show cylinders that are rotating at Ω < Ωcrit, where Ω is defined in 

equation (80) as the ratio of cylinder surface speed 𝑢𝑟 to freestream velocity 𝑢∞. The 

cylinders on the right show cylinders rotating at Ωcrit, which is the rotational velocity at 

which the streamlines form a virtual elliptical body that produces no vortices and thus 

experiences zero translational drag. Gap size determines Ωcrit, with smaller gap sizes 

corresponding to smaller Ωcrit. Gap size is measured in cylinder diameters, so that a gap 

size of 1 corresponds to two cylinders whose closest points are one diameter apart. A pair 
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of cylinders with a gap size of 1 were determined to both numerically and experimentally 

to have Ωcrit ≅3 [45, p. 13]. The cylinders require power to maintain their rotational 

velocity, which means drag is experienced in the rotational direction, but not in the 

horizontal direction. In Figure 22 the horizontal direction would be to the left, with 𝑢∞ 

moving from left to right. The streamlines in Figure 22 were produced using a computer 

program, however pictures were taken during a physical experiment that showed the 

same formation of a virtual elliptical body [45, p. 14]. These pictures were taken at 

Re=150. Rotational drag is referred to as drag torque (M) because it is measured as a 

torque instead of as a force. An airship consisting of a properly spaced pair of counter 

rotating cylinders could conceivably achieve high forward velocities with low 

translational drag by forming a virtual elliptical body.  

Figure 22: Formation of Virtual Elliptical Body at Critical Velocity [45] 

 
 

Ω =
ur
u∞

 

 

 (51) 

 

Where: 
𝑢𝑟 = cylinder tip speed 
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𝑢∞ = free stream velocity (translational) 

 

3.2.3 Power Requirements 

The power required to rotate a cylinder in a stationary body of air is shown in 

equation (52) and is the combination of power required due to drag torque PM, spherical 

endcap rotation Ps, and bearing friction Pb. Power required due to drag torque PM was 

calculated using equation (53) [46], which is the rotational velocity times drag torque 

(M). Equation (54) [47, p. 370], was used to calculate M, where the rotational drag 

coefficient (𝐶𝐷𝑐) was calculated according to equation (55) [47, p. 370]. These equations 

were derived in [47] based on experimental analysis of high speed, rotating cylinders by 

Theodorson and aerodynamic theory by Prandtl and von Karman. Interestingly, 

Theodorson discovered that the rotational drag coefficient, 𝐶𝐷𝑐 , of cylinders is 

independent of velocity even though his experiments ranged well above cylinder surface 

velocities of mach=1.The equation for Reynolds number in equation (56) [48, p. 10] is 

the same as the Reynolds number for an object translating through air, but instead of the 

length of the vehicle, the radius is used. These equations were used to calculate the power 

required to rotate a single cylinder in a stationary body of air, which is greater than the 

power required to rotate cylinders in a fully developed virtual elliptical body [45, p. 32]. 

The power reduction for a virtual elliptical body was considered below, but it was first 

necessary to find the power required to rotate cylinders without a fully developed 

elliptical body. 

𝑃𝑏 was calculated using equation (63) [49, p. 460]. 𝑃𝑏 is a function of bearing 

load (𝐹𝑏), bearing radius (𝑟𝑏), 𝜔, and coefficient of friction (𝐶𝑓𝑏). 𝐹𝑏 was assumed to be 
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the cylinder useful lift, which is the buoyant force of the cylinder minus its weight. 𝑟𝑏 and 

𝐶𝑓𝑏were found on a bearing vendor’s website [50]. 

Ps was calculated using equation (58), [47, p. 370] and was derived during the 

same study that produced equations (53) - (55). The spherical end-caps on the rotating 

cylinders were assumed to be rotating disks for drag purposes. The drag coefficient of a 

rotating disk (𝐶𝑚𝑠) was verified experimentally by [47] and shown in equation (59).  

Pr = PM + Pb + Ps 

 

 (52) 

 

𝑃𝑀 = 𝜔 ∙ 𝑀 

 

 (53) 

 

𝑀 = 𝐶𝐷𝑐 ∙ 𝜌𝑎𝑖𝑟 ∙ 𝑢𝑅2 ∙ 𝜋 ∙ 𝑟𝑐 ∙ 𝑙𝑐 

 

 (54) 

 

1
�𝐶𝐷𝑐

= −0.6 + 4.07 ∙ 𝑙𝑜𝑔10 𝑅𝑒 ∙ �𝐶𝐷𝑐 

 

 (55) 

 

𝑅𝑒 = 𝜌𝑎𝑖𝑟 ∙ 𝑢𝑡 ∙
𝑟
𝜇

 

 

 (56) 

 

𝑃𝑏 = 𝐶𝑓𝑏 ∙ 𝑟𝑏 ∙ 𝜔 ∙ 𝐹𝑏 

 

 (57) 
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𝑃𝑠 =
1
2
∙ 𝐶𝑚𝑠 ∙ 𝜌𝑎𝑖𝑟 ∙ 𝜔

3 ∙ 𝑟𝑐5 

 

 (58) 

 

𝐶𝑚𝑠 =
0.146
𝑅𝑒0.2  

 

 (59) 

 

Where: 
𝐶𝐷𝑐 = rotating cylinder drag coef�icient 
𝐶𝑓𝑏 = bearing coef�icient of friction 
𝐶𝑚𝑠 = spherical endcap drag coef�icient 
𝐹𝑏 = bearing load 
𝑙𝑐 = cylinder length 
𝑀 = rotating cylinder drag moment 
𝑃𝑏 = power required due to bearing friction 
𝑃𝑀 = power required due to torque drag 
𝑃𝑠 = power required due to spherical endcap rotational drag 
𝑃𝑟 = total power required to rotate cylinder 
𝑟𝑏 = bearing radius 
𝑅𝑒 = Reynold′s Number 
𝑢𝑡 = rotating cylinder tip speed 
𝜇 = air viscosity 
𝜔 = cylinder rotational velocity 

 

 

Figure 23, [45] shows that as the gap size, displayed as g in Figure 23, between 

rotating cylinders decreases, the reduction in torque drag increases. Also, the critical tip 

speed ur required to achieve the virtual elliptical body decreases as Ωcrit decreases as in 

equation (51). The implication of this relationship is that the closer the cylinders are 

placed on the vehicle, the higher translational velocity the vehicle can achieve while 

maintaining a virtual elliptical body for a given cylinder rotational velocity, and the lower 

the torque drag (power required to rotate cylinders) that will be encountered. This 

research has not yet been conducted at gap sizes of less than 1 cylinder diameter. An 
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interesting area of future research would be to measure torque and translational drag on 

counter-rotating cylinders with gap sizes between 0 and 1 diameter to produce graphs 

similar to Figure 23.  

Figure 23: Reduction in Moment and Drag at Critical Rotational Velocity [45] 

 
 

3.2.4 Engine and Fuel Weight 

After determining the translational velocity of a RCVLTAV based on equation 

(51) the vehicle payload (W) was calculated using equation (60) assuming two counter-

rotating cylinders with buoyant lift Lcb, a gondola the size of a C-27 cabin with mass 𝑚𝑔, 

4 cylinder bearings with mass 𝑚𝑏, a turboshaft engine with enough power to rotate the 

cylinders and provide sufficient thrust to overcome the drag of the gondola with mass 

me, as well as enough fuel to travel 2130 km with mass mf. It was assumed that no 

translational drag would be encountered by the rotating cylinders. Total power required 

CP 1.4 vs 1.8 
75 % Torque Drag
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(Ptot) was used to determine fuel and engine requirements. Engine mass mewas 

calculated using equation  (61) which is an empirical formula for specific engine power 

for a turbo shaft engine [13, p. 225]. Fuel mass mf was calculated using equation (62)  

which was derived based on the work required to fly 1852 km, the energy density of fuel 

(ζ), and engine efficiency (kee).  

Equation (63) was used to determine Ptot, which was assumed to be composed of 

the power required to spin two cylinders and the power required to counter translational 

drag (Px). Power required due to drag Px was calculated using equation (64) which is the 

power equation for propellers with thrust equal to drag [25]. This is a function of 

propeller efficiency (kpe), propeller area (ap), thrust required, which in this case is the 

drag due to the gondola (Dg) assuming steady level flight, u∞, and ρair. Gondola drag Dg 

was calculated based on gondola cross sectional area ag (perpendicular to u∞) and the 

gondola drag coefficient Cdg, [13]. The drag coefficient of the gondola Cdgwas assumed 

to be the same as the average subsonic aircraft[51].  

W = 2 ∙ Lcb − g ∙ �4 ∙ mb + mg + me + mf� 

 

 (60) 

 

me = Ptot ∙ 0.00201 
kg

watt
 

 

 (61) 

 

mf = range ∙
Ptot

kee ∙ u∞ ∙ ζ
 

 

 (62) 
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Ptot = Px + 2 ∙ Pr 

 

 (63) 

 

Px = kpe ∙
Dg
2

2 ∙ ρair ∙ ap ∙ u∞
 

 

 (64) 

 

Dg =
1
2
∙ ρair ∙ u∞2 ∙ ag ∙ Cdg  

 

 (65) 

 

Where: 
𝑎𝑔 = cabin cross sectional area perpendicular to 𝑢∞ 
𝑎𝑝 = propeller area 
𝐶𝑑𝑔 = gondola drag coef�icient 
𝐷𝑔 = gondola drag 
𝑘𝑒𝑒 = engine ef�iciency 
𝑘𝑝𝑒 = propeller ef�iciency 
𝑚𝑏 = bearing mass 
𝑚𝑔 = gondola mass 
𝑃𝑡𝑜𝑡 = total power required for propellers and rotating cylinders 
𝑃𝑥 = power required due to cabin drag 
𝑊 = useful load 
ζ = energy density of fuel 

 

 

 

The calculation of W was necessary to determine the feasibility of the RCVLTAV 

concept. If W were negative the aircraft could not fly. If W were positive it could be used 

along with 𝑢∞ and Ptot to calculate 𝑒𝑉𝐾. Von Karman efficiency could then be used to 

compare the performance of the conceptual vehicle to existing vehicles. 



 

70 
 

3.3 Isogrid Stiffened Sphere 

An isogrid acts like an isotropic, thin shelled structure, therefore equation (14) can 

be used to evaluate an isogrid stiffened sphere using equivalent thickness and stiffness. 

The NASA isogrid handbook [36] describes a simple isogrid composed of equilateral 

triangles as pictured in Figure 24, [36, p. 20.0.019]. 

Figure 24: Isogrid Geometry [36] 

 
Where: 
𝑡𝑠𝑘𝑖𝑛𝑠 = skin thickness 
𝑑 = flange height 
𝑏 = flange width 
h = triangle height 
a = triangle leg length 
 

Equation (66) is the same as equation (14) but with E and t replaced by E* and t* 

which are the equivalent Young’s Modulus and skin thickness respectively. The 

equivalent parameters E* and t* account for the stiffening effect of the grid, but because 

they are isotropic, equation (14) is still valid. Equations  (67) and  (68) give E* and t* 

where (1+𝛼)2

𝛽
 represents stiffness and 𝛽

1+𝛼
 represents thickness effect of the stiffeners on 

the skin.  

a 

ℎ =
√3 
2
∙ 𝑎 

b 

d 

𝑡𝑠𝑘𝑖𝑛𝑠   
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𝑝𝑐𝑟𝑖𝑡 = 0.8 ∙
𝐸 ∗

√1 − 𝜐2
∙ �
𝑡 ∗
𝑟𝑠
�
2
 

 

 (66) 

 

𝐸∗ = 𝐸 ∙
(1 + 𝛼)2

𝛽
 

 

 (67) 

 

𝑡∗ = 𝑡𝑠𝑘𝑖𝑛𝑠 ∙
𝛽

1 + 𝛼
 

 

 (68) 

 

Where: 
𝐸∗ = equivalent monocoque stiffness 
𝑡∗ = equivalent monocoque thickness 

 

 

The non-dimensional values 𝛣 and 𝛼 are given by equation (69) and equation  

(70). They are geometric properties of the isogrid used in equations  (67) and  (68). They 

were derived based on transformed geometry with the derivation in [36, p. 20.0.019].  

𝛽 = �3 ∙ 𝛼 ∙ �1 +
𝑑

𝑡𝑠𝑘𝑖𝑛𝑠
�
2

+ (1 + 𝛼) ∙ �1 + 𝛼 ∙ �
𝑑

𝑡𝑠𝑘𝑖𝑛𝑠
�
2

�  
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𝛼 =
𝑏 ∙ 𝑑

𝑡𝑠𝑘𝑖𝑛𝑠 ∙ ℎ
 

 

 (70) 

 

Equations  (66)- (70) can be used to determine the complete sphere buckling 

mode. However there are other buckling modes that must be examined. These are rib and 

skin buckling and are determined by equations (71) and (72) respectively [36]. Equation 

(71) is the equation for buckling of a plate that is clamped on three sides and free on the 
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fourth [36, p. 4.1.003]. This is an appropriate model because the stiffener is optimal at a/d 

<5 which gives it the dimensionality of a plate. If a/d>5 beam theory would be more 

appropriate. Equation (72) is the equation for buckling of an edge loaded, clamped, 

triangular plate [36, p. 4.1.004]. 

𝜎𝑐𝑟𝑏 = 0.456 ∙
𝜋2 ∙ 𝐸

(1 − 𝜐2) ∙ �
𝑏
𝑑
�
2

 

 

 (71) 

 

𝜎𝑐𝑠𝑏 =
5

12
∙
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(1 − 𝜐2) ∙ �
𝑡𝑠𝑘𝑖𝑛𝑠
𝑎

�
2
 

 

 (72) 

 

Where: 
𝜎𝑐𝑟𝑏 = rib buckling critical stress 
𝜎𝑐𝑠𝑏 = skin buckling critical stress 
 

 

 

All values of t, d, b,and h that satisfy equations  (66),  (71) and  (72) are part of the 

feasible design space for the grid stiffened sphere. By simultaneously satisfying these 

equations, with the assumption that the optimal point would occur when all constraints are 

active, a system of three equations and four unknowns was formed. This allowed a simple 

graphical optimization method in which the lowest W/B was chosen by varying one 

variable and solving for the remaining three variables. In this case 𝒕𝒔𝒌𝒊𝒏𝒔 was chosen as the 

free variable, and d, b, and h were found by satisfying equations  (66),  (71), and  (72).  

Figure 25 is a plot of W/B vs 𝑡𝑠𝑘𝑖𝑛𝑠where W/B is a function of smeared skin 

thickness (𝑡̅), 𝑟𝑠, and atmospheric properties as shown in equation (73). Equation (73) is 

the ratio of sphere weight to buoyant force. Sphere weight was based on 𝑎𝑠, 𝜌𝑠𝑘𝑖𝑛, and 𝑡̅. 
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𝑡̅ was calculated by smearing the stiffeners and adding them to 𝑡𝑠𝑘𝑖𝑛𝑠 as shown in 

equation  (76). Smearing was accomplished geometrically by taking stiffener length (a) 

times stiffener cross-sectional area (𝑏 ∙ 𝑑), assuming half of each stiffener was applied to 

each triangle, assuming three stiffeners per triangle, and dividing by triangle area which 

was 1
2
∙ 𝑎 ∙ ℎ. This gave the smeared thickness of 3 ∙ 𝑏 ∙ 𝑑

ℎ
 for each stiffener.  

𝑊
𝐵

=
𝜌𝑠𝑘𝑖𝑛 ∙ 𝑎𝑠 ∙ 𝑡̅
𝜌𝑎𝑖𝑟 ∙ 𝑣𝑠

 

 

 (73) 

 

𝑡̅ = 𝑡𝑠𝑘𝑖𝑛𝑠 + 3 ∙ 𝑏 ∙
𝑑
ℎ

 

 

 (74) 

 

Where: 
𝑡̅ = smeared skin thickness 
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Figure 25: UHM Carbon Epoxy Isogrid Optimization 

 
 

 The optimal point in Figure 25 was the point of minimum W/B. This W/B, being 

a function of 𝑡𝑠𝑘𝑖𝑛𝑠, enabled selection of the optimal variables 𝑡𝑠𝑘𝑖𝑛𝑠, b, d, and h. This 

method, however, did not necessarily result in the true optimal geometry. It was 

recommended by the isogrid handbook, which was written in 1973 before more robust 

optimization techniques were made possible by modern computers. An alternate 

optimization technique was performed using a non-linear programming optimization 

routine in Matlab. The problem was formulated with equation (73) as the cost function to 

minimize, equations (66), (71), and (72) as constraints to be satisfied, and 𝑡𝑠𝑘𝑖𝑛𝑠, b, d, and 

h as variables. The optimization program, called fmincon, conducted a search in order to 

minimize the cost function while satisfying the constraints by systematically changing the 

Optimal 𝑡𝑠𝑘𝑖𝑛𝑠 

Minimum W/B 
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variables. More details on this optimization technique are available in 3.4.2 Optimization, 

and the code is available in Appendix A.13-15. 

3.4 Geodesic Sphere 

The geodesic sphere investigated consisted of a frame made of UHM carbon fiber 

tubes with a reinforced Mylar membrane stretched over it similar to a camping tent. 

Figure 26 shows an icosahedron where the black lines represent the UHM carbon frame, 

and the shaded triangular faces represent the Vectran reinforced Mylar membrane. 

Figure 26: Geodesic Sphere Representation 

  
 

The material used to reinforce the Mylar membrane would need to have low 

density, high strength, high toughness and high stiffness. Two materials currently 

available for stiffening the skin are Zylon and Vectran as shown in Table 6. If graphene 

could be made in usable sizes and attached to the structure, it would far exceed the 
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performance of currently available materials. The optimization was performed for the 

frame alone. The skin was evaluated separately after the frame. 

Table 6:  Material Properties-Skin 

Material 
from 

Matweb 
E, Pa 

𝛒𝐬, 
𝒌𝒈
𝒎𝟑 

𝝈𝒚, 
GPa 

 
Geodesic 

Skin 
W/B 

 

Comments 

 
Graphene 

 
 

250 ∙ 109 100 130 0.02 

Only 
Available 
in small 
sheets 

 
Zylon 

 
303 ∙ 109 1560 5.8 2.5 Fiber 

Vectran 75 ∙ 109 1400 3.2 3.6 Fiber 

 

The W/B of the UHM carbon tube frame was computed according to equation  

(75). The variables 𝑡𝑐𝑏 , 𝑟𝑐𝑏 , 𝑙�̅�𝑏 , and 𝜌𝑐𝑏denote the thickness, radius, average length, and 

material density respectively of the cylindrical beams. The numerator of equation (75) is 

the mass of the frame. It was derived by taking the cross sectional area of each beam, 

multiplying it by its length and density to get the mass of each beam, then multiplying the 

mass of each beam by the number of beams in the structure, ne.  Equation (32) was used 

to calculate ne. The buoyant mass, or mass of the air displaced by the geodesic sphere, is 

denoted by 𝑚𝑏, which is a function of the density of air and volume of the geodesic 

sphere as shown in equation (80). An optimization program called fmincon was run in 

Matlab to find the minimum W/B of the UHM carbon tube frame. The optimization 

problem was formulated as follows [52]:  
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Minimize: 

𝐹(𝑡𝑐𝑏 , 𝑟𝑐𝑏 ,𝑓) =
𝜌𝑐𝑏 ∙ 2 ∙ 𝜋 ∙ 𝑟𝑐𝑏 ∙ 𝑡𝑐𝑏 ∙ 𝑙�̅�𝑏 ∙ 𝑛𝑒

𝑚𝑏
 

 

 (75) 
 

 

Subject to: 

𝑔1 = 𝑃𝑒
2∙𝜋∙𝑟𝑐𝑏∙𝑡𝑐𝑏

− 𝜎𝑐𝑏𝑐𝑦 ≤ 0  

 

 (76) 
 

𝑔2 = 𝑃𝑒 −
4 ∙ 𝜋2 ∙ 𝐸𝑐𝑏∙𝐼𝑐𝑏

𝑙𝑐𝑏2
≤ 0 

 

 (77) 
 

𝑔3 = 𝑡𝑐𝑏
2
− 𝑟𝑐𝑏 ≤ 0  

 

 (78) 
 

𝑔4 = 𝑟𝑐𝑏 +
𝑡𝑐𝑏
2
−
√3 ∙ 𝑟𝑠
4 ∙ 𝑓

≤ 0 

 

 (79) 
 

 

Where: 

𝑚𝑏 = 𝑉𝑔𝑠 ∙ 𝜌𝑎𝑖𝑟    

 

 (80) 
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And: 

𝑔1 = requirement that the compressive yield strength of the material not be 

exceeded by the stress in any given beam.  

𝑔2 = Euler’s buckling equation for a cylindrical column under axial load with 

clamped ends, [4] 

𝑔3 = requirement that the thickness not exceed twice the radius, the thickness of 

the beam cannot extend past the center point of the beam, at which point the 

cylinder is no longer a hollow pipe but is now a solid bar. 

𝑔4 = requirement that the radius of the beam not extend past the center of a given 

minor triangle. This is a conservative estimate that will result in at least a 

small space between beams at the center of each triangular face. 

𝐼𝑐𝑏 = the area moment of inertia of the cylindrical beam 

𝑃𝑒 = Euler load on end of beam 

𝜎𝑐𝑏𝑐𝑦 = compressive yield stress of cylindrical beam 

Assumptions: 

Clamped beams, even pressure distribution on skin, loads on beam ends only as 

equivalent forces, skin does not add stiffness, safety factor of 1.5, standard atmosphere at 

sea level, failure in any member constitutes global failure, no added mass for connectors 

at ends of beams. 

The constraint g1 was derived based on the requirement that the material 

compressive strength of the cylindrical beams, (𝜎𝑐𝑏𝑐𝑦), not be exceeded. This was 

determined using FEA to solve for the stress in each beam using analyze_beam.m in 
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Appendix A.5. After solving for the stress, the maximum stress out of all the members in 

the structure was found and compared to 𝜎𝑐𝑏𝑐𝑦. As long as 𝜎𝑐𝑏𝑐𝑦was of greater absolute 

value than the stess in every member, g1 was satisfied. 

Note that all of the constraints were set to be less than or equal to zero. This was 

required by fmincon, the optimization function used in Matlab. If any inequality 

constraint was less than or equal to zero, it was satisfied. If a constraint was greater than 

zero it was violated and the solution was considered infeasible. In the case of g1, if 

𝜎𝑐𝑏𝑐𝑦was less than the stress in the beam, then g1 would be positive and the material 

strength of the beam would be exceeded.  

The constraint g2 was derived based on the buckling load of a cylindrical column 

with clamped ends. Clamped ends were assumed because all of the methods of attaching 

the ends of the beams to each other that were considered involved a fastening method that 

transmitted bending moments in addition to forces. If a ball and socket attachment were 

made for the structure, equation (77) would have to be replaced by the buckling equation 

for a cylindrical column with end load with a pinned boundary condition at each end, 

which is ¼ the critical load of the clamped equation.  

The constraint g4 was a geometric constraint created to keep the cylindrical 

beams’ walls from intersecting each other at the center of a triangular face.  It is based on 

the distance from the center of the triangle to its edge. Triangle height is given by 

equation (81) where a is the leg length of a minor triangle. The distance from the edge of 

a triangle to its center is 1/2 ∙ ℎ, which must be greater than or equal to the radius plus 
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thickness of the cylindrical beams, which gives g4. Note that a=1.05r/f, so that a more 

conservative solution was obtained by replacing a with 𝑟𝑠 and dividing by f. 

ℎ =
√3
2
∙ 𝑎 

 

 (81) 
 

The area of the geodesic sphere, 𝑎𝑔𝑠, was calculated by summing the area of each 

triangular face on the structure, and although not used in the optimization, enabled an 

estimate of skin weight. The volume of the geodesic sphere, 𝑣𝑔𝑠, was calculated by 

summing the volume of the triangular pyramids formed by the three vertices of each 

triangular face and the center point of the sphere as illustrated by the shaded region in 

Figure 1. Equation (82), [40], gives the volume of a pyramid, (𝑣𝑝), which is 1/3 of base 

area, (𝑎𝑏), times height perpendicular to base. In the case of a geodesic sphere, the height 

was measured from the center of the sphere to the centroid of any triangle on the surface 

and the base was the area of the triangular face. By summing the volume of the pyramids 

formed by every base, the total sphere volume was found. 

𝑣𝑝 =
1
3
∙ 𝑎𝑏 ∙ ℎ𝑝 

 

 (82) 
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Figure 27: Geodesic Sphere – Volume Calculation 

  
 

The Euler Load 𝑃𝑒 was calculated using FEA with beam elements. Forces on the 

ends of the beams were calculated using pair times the area of each triangular face, 

distributed over the three vertices of the triangle in the direction normal to the face. This 

method resulted in zero moment on each beam. This was because forces were applied at 

the nodes and not on the sides of the beams. It was also because multiple beams resisted 

the equivalent load at each node, so that axial forces in each beam resisted the equivalent 

load no matter which way it was oriented. The boundary condition consisted of restricting 

6 degrees of freedom on the node at the bottom of the sphere. No mass was added for 

connectors at the ends of the beams based on the assumption that the sphere could be 

constructed of continuously wound filaments about a mandrill where vertices would be a 

flat, continuous transition between pultruded rods. If connectors are required in the future 
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their mass will have to be added to the cost function and would be the weight of a 

connector multiplied by the number of vertices, nv.  

Table 7 displays the material properties used to calculate the optimal sphere 

geometry. Additional constants used include 𝑟𝑠 = 0.33 m, 𝑝𝑎= 101325 Pa, and 𝜌𝑎 =

1.225 𝑘𝑔
𝑚3. The assumption was made that UHM carbon had a 𝑉𝑓=0.6 of the composite 

tubes and the composite stiffness in the longitudinal direction was calculated using 

equation (24). Poisson’s ratio was assumed to be 0.3.  

Table 7:  Material Properties-Frame 

Material E, Pa ρ , kg
m3 υ 𝜎𝑐𝑏𝑐𝑦,𝑃𝑎 

 
Dupont E-130-X Pitch 
Based UHM Carbon 

Fiber 
 

895 ∙ 109 2130 Unpublished Unpublished 

UHM Unidirectional 

Carbon Epoxy tubes 
538∙ 109 1522 0.30 1 ∙ 109 

 

Figure 28 shows a workflow diagram of the optimization process. All programs 

were run within Matlab to include the geometry, force calculations, FEA, and 

optimization routine. Optimization was conducted graphically as well as numerically. 

The graphical method was primarily used to validate the numerical results, as well as 

understand the design space. The numerical method was conducted in LTA_opt.m, 

Appendix A.1, which used the Matlab optimization routine fmincon. fmincon is a 

constrained, nonlinear program that worked by systematically changing the variables f, 

𝑟𝑐𝑏, and  𝑡𝑐𝑏 in order to minimize the cost, which was evaluated using Cost.m, Appendix 
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A.2, where cost was defined by equation (75). Cost.m called the Matlab program 

Sphere_param.m, Appendix A.3, which used the variables from fmincon to calculate 

sphere parameters that were then used by Cost.m to calculate the W/B of the frame. After 

determining that it had moved in a direction to minimize the cost, fmincon checked the 

feasibility of the new variables. fmincon can automatically check the feasibility of linear 

constraints, which it did for g3, but it must call a function to evaluate nonlinear 

constraints. It did this by calling Constraints.m, Appendix A.4. Constraints.m was used to 

calculate g1, g2, and g4. g4 was simply a nonlinear function of the input variables, and so 

was quickly evaluated by Constraints.m, but g1 and g2 required the stress in each 

member to be evaluated, which required geometry and FEA based on the input variables 

from fmincon. Constraints.m called Analyze_beam.m [53], Appendix A.5, in order to 

retrieve the stress in the members. Analyze_beam.m determined the stresses in the 

members by retrieving a finite element input card, sending it to a finite element reader 

and evaluating the resulting finite element model using FEA. Analyze_beam.m retrieved 

the input card by calling the Matlab program Datcreate.m [54], Appendix A.6, which 

created a .dat input file. Datcreate.m created the input file using a node matrix, element 

matrix, force matrix, and boundary conditions provided by the Matlab program 

LTAgeod2.m, Appendix A.7. LTAgeod2.m calculated the node matrix, element matrix, 

and force matrix based on f using geodesic geometry. This program was also used to 

generate the geodesic figures shown in this document. It relied on the geometry of an 

icosahedron which was discussed in detail in chapter 2.5 Geodesic Sphere, as well as 

geodesic geometry discussed later in this chapter. After Datcreate.m retrieved the 

geometric data from LTAgeod2.m, it compiled the data into a .dat input file for use by 
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Analyze_beam.m. After receiving the .dat input file, Analyze_beam.m called the .dat file 

reader, Datread_beam.m [55], Appendix A.8, which processed the .dat file. 

Analyze_beam.m then created a global stiffness matrix, force vector, displacement 

vector, and solved for displacements. This data was then used to determine stress in each 

member of the frame, which was used by Constraints.m to calculate g1 and g2 . Finally, 

fmincon evaluated the constraints to ensure all were satisfied. It also checked to see if the 

change in cost was low enough to indicate an optimal point had been found. If 

optimization was not achieved fmincon would change the input variables using the 

interior –point search method and the whole process was repeated.  

Figure 28: Workflow Diagram 

 
 

3.4.1 Geometry 

The geodesic sphere geometry was calculated using the LTAgeod2.m program, 

Appendix A.7. This program generated a geodesic sphere by subdividing an icosahedron 

along its major triangles by the integer f according to the geometry described in [37]. 
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Geodesix sphere geometry was calculated by systematically working from top down on 

the icosahedron. Each of the major triangles were divided into three groups; the top 

pentagon cap of five triangles that touch vertex 1 in Table 5, the center band of 10 

triangles, and the bottom pentagon cap of five triangles touching vertex 12 in Table 5. 

The major triangles within these groups were subdivided by dividing each major triangle 

vertically f times per major triangle. Planer rings were then considered working from the 

top vertex down, where each ring consisted of every vertex on a plane of constant 𝜙 

(parallel to the xy cartesian plane) as shown in Figure 29. For the top pentagon cap each 

subsequent ring had one more vertex than the one before it for each major triangle. This 

pattern enabled automatic generation of vertex points for the top pentagon cap for any f. 

This pattern is shown in Figure 29, where each number represents the order of vertex 

generation for a given planer ring for a geodesic sphere of f=5. Each vertex on a plane 

had a constant 𝜙. 𝜃 was determined by dividing 2 ∙ 𝜋/5 by the number of divisions per 

major triangle for a given planer ring. As shown in Figure 29, the number of divisions 

increased by one for each planer ring, with the bottom ring having f divisions. Note that 

the major triangle shown in Figure 29 is divided into 5 rows of triangles corresponding to 

f=5. Also note that there are six triangle edges emenating from each vertex, except for 

those vertices at the corners of major triangles, these have five triangle edges and thuse 

make pentagon caps. 



 

86 
 

Figure 29: Geodesic Sphere Generation-Top Pentagon Cap 

 

 

The center band of 10 triangles, as shown in Figure 30, continued the pattern of 𝜙 

generation for each planer ring by dividing the triangles vertically f times, just as was 

done for the top pentagon cap. 𝜃 was different, however, in that every planer ring had 

exactly the same number of divisions for the center band of 10 triangles. This occurred 

because  the 10 triangles along the center band alternate between point up and point 

down.  As one triangle gets wider, the adjacent triangles get narrower. If layed flat, the 

center band of triangles would make a parallelagram with sides of 𝑙𝑒𝑛𝑔𝑡ℎ = 5 ∙ 𝑎 on top 

and bottom and length=a  on the sides, where a is the length of a major triangle leg. 

Equally dividing this parallelagram for each planer ring resulted in increments of 

𝜃 = (2 ∙ 𝜋)/(5 ∙ 𝑓). This pattern again allowed for automatic generation of vertices based 

on f. 
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Figure 30: Geodesic Sphere Generation-Center Band of 10 Major Triangles 

 

 

The bottom pentagon cap was simply the reverse of the top pentagon cap, which 

again allowed for automatic vertex generation. Similar, although somewhat more 

complicated approaches, were used to determine beam connections between vertices.  

Forces were calculated by multiplying the area of each triangle by the pressure of 

atmosphere and a 1.5 safety factor. The resulting force was divided by 3 and applied at 

the vertices of each triangle. For the icosahedron, which consists entirely of equilateral 

triangles, this resulted in completely symmetric loading. For geodesic spheres of f>1 this 

resulted in uneven loading due to slightly different triangle areas. This caused some 

beams to have higher stress than others. 

3.4.2 Optimization 

The fmincon optimization routine in Matlab is a robust solver that finds the 

minimum value of a constrained, nonlinear, multivariable function. For an in depth 

explanation of the theory behind fmincon see the Matlab help file, which includes 

references that explain the theory [56]. In this case, equation (75) was minimized subject 
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to the constraints g1, g2, g3, and g4. The constraints g1 and g2 required outputs from the 

FEA program. The FEA program was limited in function to 6 degree of freedom beam 

elements, but it was computationally efficient and operated within Matlab, which 

significantly increased the speed of each iteration above what would have been possible 

using commercial FEA codes. The results of the FEA program were checked against 

NASTRAN, which by design uses the same input files as the FEA program used for this 

study. Stress results between NASTRAN and Analyze_beam.m were the same when 

given the same .dat file from Datcreate.m.  

A genetic algorithm minimization routine was also used in Matlab, called ga.m, to 

make sure fmincon was not being caught in local minimums. The genetic algorithm 

operates by testing cost and feasibility at multiple points in the design space over 

successive generations of design point populations. The first generation is often random, 

but subsequent generations are based on the best design points, termed individuals, from 

the previous generation. After testing these points, and assigning a fitness value to them, 

the genetic algorithm selects the most fit individuals, and reproduces them. The 

subsequent generation is formed by a random group of individuals that are based on the 

most fit individuals from the previous generation, similar to the theory of natural 

selection.This continues until the genetic algorithm converges sufficiently or reaches the 

specified number of generations. This method was highly inefficient because it required 

multiple iterations of the optimization process shown in Figure 28 for each generation, 

and it required multiple generations. The purpose of using the genetic algorithm was that 

it was less susceptible to getting stuck in a local minimum due to use of the wrong start 

point. Unlike fmincon, which requires an initial value for each variable, the genetic 
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algorithm only required upper and lower bounds on variables. The optimization results of 

ga.m were nearly identical to fmincon. fmincon was much faster, and more consistent 

however. The consistency of fmincon can be explained by its search method, which uses 

first and second derivative information . The genetic algorithm used a more random 

approach, in which no two searches tested the exact same populations of points, so that 

the optimal individual was always a little different. This imprecise nature of genetic 

algorithms was acceptable as long as the number of generations, and number of 

individuals per generation were sufficient. The tolerances on fitness value change over 

subsequent generations could be adjusted so that the genetic algorithm would keep 

searching until it began finding solutions within the specified error. This resulted in 

satisfactory results within tolerance, but the solution was still slightly different every time 

the program was run. 

Finally, a graphical method of optimization was performed where the cost 

function and constraint functions were plotted for various cylinder radii and thicknesses 

while holding f constant. This provided a good sanity check for the answers fmincon 

produced as well as a better understanding of the design space. An example of the design 

space formed using the graphical method is shown in Figure 43. The cost was a function 

of three variables; 𝑓, 𝑟𝑐𝑏 , and 𝑡𝑐𝑏 which would require a four dimensional plot to optimize 

graphically. Four dimensions is difficult if not impossible to plot or even comprehend. A 

plot of cost as a function of two variables, however, would only require three dimensions. 

Due to the long times required to generate geometry and evaluate stresses using FEA for 

high f, f of only 1 through 10 were evaluated. It was hoped that by evaluating ten 

geometric frequencies a pattern would emerge, either high f would produce a lower W/B 
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or a higher W/B. Because the variable f consisted of integers, it was possible to produce 

ten three dimensional plots of the design space, each plot having a constant f, with cost as 

a function of 𝑟𝑐𝑏 and 𝑡𝑐𝑏 only. These plots allowed visual understanding of the design 

space and provided validation of fmincon and genetic algorithm results. These plots can 

be seen in Figure 43 and Figure 41 and are explained in chapter 4. 

3.5 Summary  

The methods used in this investigation included buoyancy, weight, aerodynamic, 

and power requirements for the rotating cylinder vehicle, isogrid calculations for the 

isogrid stiffened structure, and geometry, FEA and optimization for the geodesic 

structure.  

IV. Analysis and Results 

4.1 Chapter Overview 

This chapter gives the results of each study described in the methodology section. 

Also introduced are results to minor investigations which were necessary throughout the 

course of this investigation to focus the research. These include the identification of 

important material properties and choosing an altitude for evaluating vacuum LTA 

vehicles. The W/Bs obtained for the grid stiffened and geodesic spheres are listed and 

were evaluated for their impact on potential missions. Plots of von Karman efficiency 

were used to give a visual representation of these results.  
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4.2 Minor Investigations 

The main focus of this investigation was development of a structure that could 

achieve positive buoyancy using a vacuum. Whenever an idea for a structure was 

evaluated it became necessary to determine the ideal material for that structure in order to 

find the lowest W/B. Reduction of W/B required improved geometric stiffening or 

improved material properties. The effect of increasing isotropic stiffness or decreasing 

density while keeping all other material properties constant is displayed in Figure 31. The 

dominant material property is 𝐸/𝜌2, therefore reducing density has a greater effect than 

increasing stiffness. After an extensive material search it became apparent that most 

materials with low densities and high stiffness also have low compressive strength, so 

that compressive strength becomes the dominant material property. These materials are 

generally foams or micro-lattice structures. Carbon epoxy composites appear to be the 

most promising materials available for this problem due to their combination of high 

specific stiffness and high compressive strength. There may be unpublished materials 

with higher specific stiffness than evaluated in this study. The question was asked, what 

happens if there are better materials, and what would the effect of improved material 

properties be on W/B? Figure 31 shows the linear relationship between density and W/B. 

The assumptions made for creating this graph were an isotropic stiffness of E=895 GPa, 

𝜈 = 0.3, 𝜎𝑐𝑦 = 1.7 GPa and using an isogrid stiffened sphere. No material on the market 

has these characteristics, but they serve to show the effect of changing material properties 

on achievable W/B in an isogrid stiffened sphere. These effects are specific to the isogrid 

geometry, however similar affects will be seen on the frame of the geodesic sphere.  
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Figure 31: Effect of Density on W/B 

 

 

Figure 32 shows the effect of increasing stiffness.  Although increasing stiffness 

decreases W/B, the W/B is less sensitive to stiffness than it is to density. This makes 

sense when looking at equation (23), which shows that W/B is a function of 𝐸/𝜌2. The 

assumptions made for creating this graph were 𝜌 = 1522 𝑘𝑔/𝑚3, 𝜈 = 0.3, and using an 

isogrid stiffened sphere. Figure 31 and Figure 32 were produced using LTAsphere.m, 

Appendix A.10 



 

93 
 

Figure 32: Effect of Young’s Modulus of Elasticity on W/B 

 

 
 

A study was conducted to determine the optimal internal pressure for air in a 

partial vacuum LTA structure. The question that drove this study was whether there was 

an optimal internal air pressure at which the required structure weight due to external 

pressure compared most favorably with a decrease of buoyant force due to internal air 

pressure. Figure 33 shows a plot of W/B at sea level for a blade stiffened sphere 

assuming it is designed for a specific internal pressure corresponding to the value on the 

abscissa. This means that as internal pressure increases on the x axis, the structure is 

designed to withstand less external pressure loading. As design internal pressure 

increases, even with the reduced stiffness requirement, the increase in weight due to the 

air molecules inside the structure, as well as the decrease in buoyant force results in a 
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decrease in achievable W/B. These calculations were performed in the Matlab program 

titled LTApvalt.m , Appendix A.11. The governing equations in LTApvalt are equations 

(66) through (70) where t,̅ t*, and E* were calculated in the Matlab program titled 

LTAsphere.m for a blade stiffened sphere.  

Figure 33 was generated assuming an isogrid structure with an isotropic material 

with E=450 GPa, 𝜌 = 1522 𝑘𝑔/𝑚3, 𝜈 = 0.3, sea level standard day conditions. 

Although a material with these properties does not necessarily exist, Figure 33 does show 

the appropriate relationship between internal pressure and W/B. Note that the curve in 

Figure 33 appears to show a decrease in W/B at an internal pressure of about 80% of sea 

level pressure. There is indeed a decrease in W/B, but this portion of the curve will 

always decrease to a minimum W/B=1 at an internal pressure of sea level. This is because 

the required structural stiffness approaches zero as internal pressure approaches sea level 

pressure, but the weight of air inside the structure approaches the weight of air displaced, 

so that as the structure weight decreases, the internal weight of air increases. The farthest 

right point on the graph is where W/B=1 because the structure no longer exists, and the 

air is neutrally buoyant within itself. Therefore the only truly informative part of the 

curve in Figure 33 is the portion of the graph to the left of the W/B maximum point. This 

portion of the curve shows that as internal pressure decreases, W/B also decreases, so that 

the point of minimum W/B will be achieved when there is a perfect vacuum inside the 

structure. 
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Figure 33: Effect of Increasing Internal Pressure 

 

Does an increase in volume result in a decrease in W/B? This question is often 

accompanied with a reference to the squared cube law. The squared cube law states that 

as the radius of a sphere increases, its surface area grows at a rate of radius squared, 

while its volume grows at a rate of radius cubed. These relationships can be seen by 

comparing equations (21) and (41), which are the volume of a sphere and surface area of 

a sphere respectively. This is also reflected by von Karman efficiency, defined by 

equation (2), which favors an increase in volume for an airship. This is shown graphically 

in Figure 9 where the airship with the larger radius (and thus volume) has a better von 

Karman efficiency (its curve is down and to the right). This is because the lifting capacity 

of the airship grows faster with an increase in volume than the drag of the airship. 
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If the square cubed law makes the conventional airship favor larger sizes, does it 

do the same to the vacuum structure? As far as von Karman efficiency is concerned, the 

vacuum airship would perform better at higher volumes. But as far as W/B is concerned, 

the squared cube law does not apply. This is because the vacuum LTA vehicle must be 

able to resist compressive loads without buckling or exceeding material strength. This 

can only be accomplished by an increase in thickness whenever there is an increase in 

volume for a given design. The increase in thickness, accompanied by the increased 

surface area, increases the volume of the skin material at the same rate as the volume of 

the overall structure is increased, so that the mass of the structure maintains the same 

ratio with the mass of the air displaced. In other words, the W/B is constant for a given 

design regardless of volume. There are several advantages to making a vacuum LTA 

vehicle larger, however. One is that a larger structure has thicker walls. The designs in 

this study require very thin walls, some that might be thinner than current manufacturing 

capabilities allow. By making a larger structure it would be possible to use larger 

thicknesses that can be accommodated by current technology. The second advantage is 

increased von Karman efficiency, as previously discussed. The property of constant W/B 

regardless of sphere size means that the dimensions of the results of this study can be 

scaled, but the optimal W/B will be the same for any sized sphere.  

4.3 Rotating Cylinder Vacuum LTA Vehicle 

The RCVLTAV was evaluated with assumptions listed in Table 8. The results 

gave energy requirements so high for each radius and length calculation that the weight 

of the engine and fuel was prohibitive for flight. This was because the entire lift capacity 
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of the vehicle was less than the weight of the engine and fuel required to rotate the 

cylinders according to equations (61) and  (62). This held true for rotating cylinder 

vehicles at all altitudes with cylinder radii of 10 meters or less and a length/diameter 

<500 even if the weight of fuel was neglected. The power requirements of the 

RCVLTAV are plotted with the power requirements of the C-27J in Figure 34 to give an 

idea of how much power the RCVLTAV would require. An altitude of 19.8km (65k ft) 

MSL was assumed, which was the most efficient altitude for the RCVLTAV. These high 

power requirements were due to high rotational velocities, which were required by the 

assumption that the external pressure due to atmosphere was fully resisted by the inertia 

of rotating cylinder walls. At sea level the cylinder surface velocity, 𝑢𝑟 ≅ 730 m/s, 

which is greater than the speed of sound, while at 19.8km MSL it was about 195 m/s. 

Due to the fact that 𝐶𝐷𝑐 does not change with Mach number [47], equation (55) remains 

valid even for high velocities. Whether or not counter rotating cylinders would form 

virtual elliptical bodies at high Reynolds numbers is uncertain. The RCVLTAV at 

19.8km would have Reynolds numbers ranging from 1 ∙ 107to 1.2 ∙ 108 for radii of 1 to 

10 meters. The assumption was made that the rotating cylinders would act in the same 

manner as rotating cylinders with low Reynolds numbers. If the results of this study was 

favorable to the performance of the RCVLTAV this assumption would need to be 

verified.  

Table 8: Rotating Cylinder Vehicle Assumptions 

𝑎𝑔 = 10.5 m2 based on cylindrical cross section of C-27J cabin[6] 
𝑎𝑝 = 12.6 m2 based on historical airship rotor sizes [9] 
𝐶𝑑𝑔 = 0.012 based on wind tunnel testing[13] 
𝑘𝑒𝑒 = 0.33 based on turbine engine efficiency [13] 
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𝑘𝑝𝑒 = 0.55 assuming stern mounted propellers [24] 
𝑚𝑏 = 26 kg from vendor website [50] 
𝑚𝑔 = 2114 kg based on 11 kg

m3 and volume of C-27J cabin [13],[6] 
range= 1852 km based on C-27J range [6] 
ζ = 43.02 ∙ 106 J

kg
 BP Jet A [57] 

Ω = 1.5 assuming less than 1 cylinder diameter spacing [45] 
sea level to 19.8km (65k ft) MSL standard day atmospheric conditions  
 

 

Figure 34: Power Required by RCVLTAV at 75% Drag Torque at 19.8km MSL 

 

A reduction in drag torque of about 25% on counter rotating cylinders due to a 

virtual elliptical body has been shown [45]. There is an apparent trend that as the gap 

between cylinders is decreased, the drag torque also decreases. The question was raised, 

how much would the drag torque have to decrease in order for the RCVLTAV to become 
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feasible? The energy requirements of a RCVLTAV with a 99% decrease in drag torque, 

at the optimal operating altitude of 19.8km MSL, resulted in a vehicle that could fly. The 

energy comparison between this vehicle at various cylinder radii and the C-27J is plotted 

in Figure 35. This shows that with a radius of less than nine meters, the RCVLTAV 

would use less energy than the C-27J. In order to better understand the transportation 

efficiency of the RCVLTAV a plot of von Karman Efficiency is shown for radii of one 

through ten meters in Figure 36.  

Figure 35: Power Required by RCVLTAV at 1% Drag Torque at 19.8km MSL 
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Figure 36: RCVLTAV at 1% Drag Torque at 19.8km MSL 

 

 The von Karman efficiency of the RCVLTAVs in Figure 36 are excellent, but it is 

unlikely that a drag torque reduction of 99% will occur for closely spaced, or even 

touching cylinders. Even if a drag torque reduction of 99% were possible, the vehicle still 

could not operate at sea level. At sea level, the energy requirements were higher due to 

increased drag, so that an engine that could provide the required power would be too 

heavy. Therefore the vehicle would have to be assisted in its climb to altitude by another 

vehicle capable of carrying itself and the vehicle in question. The geometry of this 

structure would be 1 to 10 meters in radius (or higher if desired), W/B=0.51, 305 to 3100 

meters long, and have a mass of 5,865 to 990,000 kg (depending on radius).The 
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dimensions of this vehicle, the inability to fly at sea level atmospheric conditions, and the 

requirement for a 99% reduction in drag torque, all combine to make the RCVLTAV 

appear infeasible. 

4.4 Isogrid Stiffened Sphere 

Using equations (66) - (72) the optimal isogrid dimensions were calculated for a 

1/3 meter radius sphere made of the UHM carbon epoxy with properties shown in Table 

4. The W/B of various structures were found to be independent of size so that any radius 

could have been chosen. A 1/3 meter radius was chosen to create a structure capable of 

fitting through a door. This had both research and mission purposes. For the purposes of 

research it would be more economical to construct a structure that uses less material. If a 

vacuum LTA structure could be designed, it would be advantageous to have it small 

enough to move in and out of labs, class rooms, vehicles etc. Also, one mission type 

identified as suitable for the vacuum LTA vehicle was as a small sensor platform for use 

in the urban environment.  

An optimization was performed using equations  (66),  (71), and  (72) and four 

unknowns (b, d, h, and 𝑡𝑠𝑘𝑖𝑛𝑠). The optimization was performed by assuming the 

optimum design occurred when each of the constraints were simultaneously satisfied. 

Because there was one more variable than equation, it was possible to solve the equations 

for multiple values of  𝑡𝑠𝑘𝑖𝑛𝑠. The equivalent mass thickness, 𝑡̅, was calculated using 

equation (74), which gave the thickness that would be obtained if the isogrid was 

smeared evenly over the skin. 
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Equations (20), (21), (73), and (74) were used to determine the W/B of the grid 

stiffened sphere at standard day sea level pressure with a safety factor of 1.5. By varying 

thickness and solving for the remaining three variables a different W/B was calculated for 

each thickness and plotted in Figure 37 for a sphere made of Beryllium. The thickness 

corresponding to the lowest W/B was chosen as the optimal structure. The W/B for the 

optimal structure came out to be 1.7. Unfortunately this isogrid structure would not 

achieve positive buoyancy.  

Figure 37: Beryllium Isogrid Optimization 
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Equations (5) and  (21) were then used to determine the W/B ratio of an 

unstiffened sphere of the same radius, material, and atmospheric conditions. This ratio 

came out to be 3.6. Therefore the isogrid structure reduced the W/B ratio of the 

unstiffened sphere by about 52%. Both values can be seen on Figure 37. This exercise 

demonstrates the difficulty of achieving positive buoyancy with a vacuum structure. It 

also demonstrates the importance of both material selection and geometry. Beryllium was 

selected because it had the highest E/𝜌2 value of any isotropic material investigated. Note 

the flat portion of the curve at the bottom of Figure 37 where W/B is 1.7 for a range of 

thicknesses. The flat portion is caused by the material compressive strength constraint 

becoming active as opposed to the buckling constraint. When this occurs there is a 

minimum cross sectional area required in order to prevent material failure, so no matter 

what combination of variables are chosen, they must add up to a minimum 𝑡̅. If the 

compressive yield strength of the beryllium could be augmented, a lower value for W/B 

could be achieved. Augmentation in this case could take the form of adding another 

material to the structure. For a composite material it could mean adding a different fiber 

or additive to the matrix. This demonstrates that although E/𝜌2 is important, in this case 

the material compressive yield strength is the active constraint at the optimal point, so 

that an increase in material stiffness would have no effect on W/B. There are lightweight 

materials such as plastic foams that have better E/𝜌2 values than UHM carbon fiber, but 

due to their low compressive yield strengths they are unsuitable for this problem. These 

materials fail when their compressive yield strength is exceeded.  

An evaluation of the grid stiffened sphere was conducted using Dupont E-130-X 

carbon fiber in an Epoxy matrix. A unidirectional arrangement of fibers was assumed for 
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the stiffeners, and a quasi-isotropic laminate for the skin. If a [0/±45/90]s ply 

arrangement were used for the skin, the estimated isotropic stiffness would be 

approximately 202 GPa. The unidirectional fiber Modulus in the stiffeners was 

approximately 538 GPa. In order to use the isotropic assumptions of the isogrid 

handbook, a transformed thickness had to be computed for the stiffener. This was done 

using equation (83), which gives equivalent stiffener thickness by multiplying the actual 

thickness by the ratio of stiffener stiffness to skin stiffness. The transformed thickness 𝑏∗ 

is then used in equation (70) to calculate 𝛼  in order to determine the equivalent thickness 

and stiffness E* and t*. 

𝑏∗ = 𝑏 ∙
𝐸𝑠𝑡𝑖𝑓
𝐸𝑠𝑘𝑖𝑛

 

 

 (83) 

 

Where: 
𝑏 = stiffener thickness 
𝑏∗ = transformed stiffener thickness 
𝐸𝑠𝑡𝑖𝑓 = stiffener modulus of elasticity 
𝐸𝑠𝑘𝑖𝑛 = skin modulus of elasticity 

 

 

 After transforming the stiffener thickness it is possible to treat the entire structure 

as having isotropic properties of constant stiffness in order to use equation (66). This 

process was used to determine the W/B of an isogrid stiffened sphere assuming UHM 

carbon as described above. The resulting W/B is displayed in Figure 38. The W/B is 

slightly better than beryllium, but LTA flight is not achieved. Note that the bottom of the 

curve in Figure 38 is curved, not flat like in Figure 37. This is because the compressive 

strength of the epoxy matrix, as shown in Table 7, is sufficient to prevent material failure 
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and allow very small 𝑡̅. In this case the E/𝜌2value is the active material constraint, and 

changes in stiffness would result in smaller W/B. 

Figure 38: UHM Carbon Epoxy Isogrid Optimization 

 
 

The optimal design values for a sphere of 𝑟𝑠 = 0.33 m are as follows: ℎ =

2.1 mm, 𝑡 = 0.042 mm., 𝑏 = 0.035 mm, and 𝑑 = 1 mm. This design would be 

extremely difficult to build on account of the small size and high number of stiffeners 

required. In order to arrange triangular stiffeners on the surface of a sphere, a geodesic 

arrangement must be used. Therefore the geometry used to calculate the geodesic sphere 

can also be used to calculate the arrangement of isogrid stiffeners. An 𝑟𝑠 = 0.33 m with 

an 𝑎 = 2.4 mm implies that the major triangle of length 0.347 (where 𝑎 = 1.05 ∙ 𝑟𝑠), 

would be divided 144 times to get a minor triangle length of 4.1 mm, meaning  f=144. 

Using equation (28), the number of individual blade type stiffeners (triangle legs) would 

𝑡𝑠𝑘𝑖𝑛 = 4.2 ∙ 10−5, meters 

W/B=1.03 
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be 622,080. The Isogrid Handbook [36] actually mentions that a feasible way to apply an 

isogrid to a sphere is using the geodesic method described in [37]. A close-up view of the 

surface of the proposed sphere with f=85 is shown in Figure 39. An f=144 would be even 

more complex. A feasible method for building such a complex structure would require 

automation.  

Figure 39: Isogrid Visualization f=85 

 
 

  After conducting the optimization technique of simultaneously satisfying all three 

constraints it became apparent that the isogrid did not perform as well as expected. The 

possible cause was that the optimal design did not have all constraints active. Finding this 

point required a more robust optimization method. Therefore the isogrid was optimized 

using the non-linear programming optimization routine called fmincon. The program was 

inconsistent with its results at first because of scaling problems. The variables h, 𝑡𝑠𝑘𝑖𝑛𝑠 , 

b, and d were so small that the program’s step size tended to overshoot the optimal point 

and failed to converge on the right value. After properly scaling the problem to make the 

variables have a magnitude close to unity, fmincon consistently converged on a 
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W/B=0.81. This occurred at h=1.4 mm, 𝑡𝑠𝑘𝑖𝑛𝑠=0.032 mm, b=0.015 mm, and d=1.27 mm. 

These values did not lie in the two dimensional design space shown in Figure 38 because 

not all constraints were active at the optimal point. Only the global buckling constraint, 

equation (66), was active with a value of -0.01. The negative value indicates that the 

constraint was satisfied, the magnitude indicates it was just barely satisfied, thus it was an 

active constraint. The other constraints were inactive with values for the skin buckling of 

-63 and rib buckling of -73. The negative values indicate the constraints were satisfied, 

which means the buckling load was not exceeded by the stress. The magnitudes indicate 

that the skin and stiffeners had thicker cross sections than the minimum required to 

prevent buckling of the skin or stiffeners, which means these constraints were not active.  

Two additional constraints were added to the optimization. These were the 

requirement that the skin compressive yield strength and stiffener compressive yield 

strength not be exceeded by the stress in the structure. This resulted in a total of 5 

equations and four variables. The problem was not over-constrained, however, as long as 

no more than four variables were active. It turned out that at the optimal point for each of 

the isogrid designs only one constraint was ever active, the global buckling constraint, 

equation (66). 

The same optimization was run for pure beryllium resulting in a W/B=1.7, just as 

in the method of simultaneously solving constraints. This was the expected result because 

the compressive strength of beryllium prevented the design from falling below a 

minimum cross sectional area, which prevented reduction in W/B using any method of 

optimization. No particular result was found because there were a range of values for 
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which a W/B=1.7 could occur, just as shown in Figure 37 using the first optimization 

method. 

 The same optimization was run for a sphere with a beryllium skin and a carbon 

fiber stiffener.  A W/B=0.79 was obtained with a geometry of h=1.3 mm, 𝑡𝑠𝑘𝑖𝑛𝑠=0.026 

mm, b=0.014 mm, and d=1.2 mm. This hybrid structure of beryllium and UHM carbon 

composite combined the higher isotropic stiffness of Beryllium with the higher axial 

stiffness, lower density, and higher compressive strength of UHM carbon.  

The geometry and W/B of each isogrid design is listed in Table 9. Note the 

comparatively large value for b and small value for d for the beryllium skin/UHM carbon 

stiffener hybrid structure. This can be explained by the high stiffness in the beryllium 

skin which did not require a substantial stiffener to be added to prevent skin or global 

buckling. The skin did require additional area, however, to spread out the stress due to its 

low compressive yield stress. The UHM carbon epoxy is substantially less dense than the 

beryllium, which makes it a better material for adding thickness.   
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Table 9:  Isogrid Results  

Material Optimization 
Method h t b d W/B Diagram 

Beryllium 

Simultaneous 
Constraint 

Satisfaction Non-
linear 

Programming 

1.8E-
03 

3.3E-
05 

4.8E-
05 

1.1E-
03 1.66 

 

UHM 
Carbon 
Epoxy 

Simultaneous 
Constraint 

Satisfaction 

2.1E-
03 

4.2E-
05 

3.5E-
05 

1.0E-
03 1.03 

 
UHM 

Carbon 
Epoxy 

Non-linear 
Programming 

1.4E-
03 

3.2E-
05 

1.5E-
05 

1.3E-
03 0.81 

 
Beryllium 
Skin  UHM 

Carbon 
Epoxy 

Stiffeners 

Non-linear 
Programming 

1.3E-
03 

2.6E-
05 

4.8E-
05 

1.4E-
05 0.79  

4.5 Geodesic Sphere 

The geodesic sphere results are given in this section, as well as a description of 

the design space. The geodesic sphere was evaluated for f=1 through 10. If the 

optimization showed that higher f resulted in lower W/B, then higher values of f would 

have been investigated. This approach was taken because of the high computational cost 

of generating and evaluating structures with high numbers of elements. The number of 

elements in a geodesic structure was equal to the number of edges, ne, given by equation 

(30). The computational cost of the optimization routine depended on f, with f=1 (30 

elements) having an average run time of 1 second and an f=9 (2430 elements) having an 

average run time of 120 seconds per iteration on an Intel® Core ™ i7-2630QM CPU @ 

2.00 GHz with 8 MB of RAM. This trend is plotted in Figure 40. The differences in run 

time were primarily due to the FEA portion of the routine with the large number of 
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elements at higher frequencies requiring significant computation times. The graph in 

Figure 40 should be quadratic, which it appears to be, Because ne is a function of 𝑓2. 

Figure 40: Effect of Geometric Frequency on Run Time 

 
 
 

It turned out that lower frequencies resulted in lower W/B, so that no f >10 was 

investigated. There are two reasons an f=1 is optimal. The first is minimal structure.  At 

higher frequencies the sphere approaches a solid sphere, whereas low frequencies have 

more empty space. This can be seen in Figure 41, where the isocost lines (lines of 

constant cost) which correspond to geodesic frame W/B, move left with increasing f. The 

axes of Figure 41 are the variables rcb and tcb. For a given combination of rcb and tcb, an 

increase in f results in an increase in W/B. This makes sense because it is equivalent to 

keeping the cross section of the cylindrical beams constant and increasing total length of 

the beams (if all members were added together to form one long cylinder). This would 
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increase overall weight of the structure while keeping buoyancy constant, which would 

increase W/B.  

Figure 41: Effect of Geometric Frequency on Feasible Design Space 

 
 

The other reason f=1 is optimal is that the icosahedron is perfectly symmetric, so 

that every beam has the same stress when loaded evenly. Figure 42 shows the 

relationship between stress and f. At higher f the average stress in all the beams decreases 

in magnitude, however some members have more stress than others due to asymmetrical 

loading. The icosahedron (f=1) is the structure with the lowest maximum stress in its 

members because it is a perfectly symmetric structure, so that its maximum stress 

magnitude is equal to its average stress magnitude. This property of the icosahedron, in 
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addition to having the lowest structural mass, results in the lowest W/B of any geodesic 

structure investigated. Note that Figure 42 is a plot of compressive stress, so that all 

values are negative and a higher compressive stress magnitude is lower on the y axis than 

a lower compressive stress magnitude. The solid dots indicate maximum stress anywhere 

in the structure, while the hollow dots indicate mean stress throughout the structure. For 

the icosahedron, which corresponds to a geodesic sphere with an f=1, the mean stress 

equals the maximum stress. 

Figure 42: Effect of Geometric Frequency on 𝝈 

 
 

Figure 43 shows the design space for f=1. White denotes the feasible design space 

with isocost lines denoting W/Bs of 1 through 4. The constraints g1, g2 and g3 are labeled 

with the infeasible design space shown in color. The constraint g4 is not pictured due to 
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being off the right side of the graph. The optimal point shows a W/B less than 1. The g1 

constraint is pictured in red (brown when it overlaps g2). The g1 constraint is the 

requirement for compressive yield strength of the material to exceed the maximum 

compressive stress in the structure. As would be expected, this constraint is parallel to the 

isocost lines because cross sectional area is directly related to both weight and stress. If 

cross sectional area is always exactly sufficient to satisfy g1, it will correspond to the 

same amount of material in the frame, which will correspond to a constant weight. Cross 

sectional area is a product of the two variables rcb and tcb, which are the x and y axes of 

Figure 43. The advantage of having g1 be the active constraint is that it allows for 

flexibility in design.  An rcb anywhere between 4mm and 1cm, as shown on Figure 43, 

will result in a W/B for the frame of 0.57. If, for example, the minimum thickness that 

can be constructed of a pultruded UHM carbon epoxy rod happens to be 0.15 mm, then 

that thickness can be selected, and the corresponding rcb=5 mm could be used without an 

increase in W/B.  

 The requirement for the buckling load of the cylindrical beams to exceed the load 

on any member in the structure is defined by g2. The constraint g2 is optimal at infinite 

radius and infinitesimal thickness. As can be seen in Figure 43, minimum rcb is defined 

by g2, and minimum tcb is defined by g1.  

The constraint g3 is the requirement that thickness not exceed half the radius, and 

so is only active for high thickness and low radius. This can be seen on Figure 43 where 

g3 is only active at low radii and high thickness.  

The constraint g4 does not even appear on Figure 43. This is because g4 sets an 

upper limit on rcb as a function of f. Higher fs result in more restrictions on rcb, so that g4 
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only becomes a factor in design spaces with high f. The constraint g4 is visible in Figure 

41 on the graph of f=5. 

Figure 43: Graphical Representation of Geodesic Sphere Design Space 

 
 
 

A minimum W/B= 0.57 was attained for the UHM carbon epoxy frame with f=1, 

𝑟𝑐𝑏 = 1 cm, and 𝑡𝑐𝑏 = 0.64 mm for the frame alone as shown in Figure 44. The cross 

section of a cylindrical tube is shown with the thickness of the cylinder wall scaled 

proportional to the radius of the cylinder. The icosahedron is also shown with the line 

thickness scaled proportional to the triangle leg length. The fmincon program proved 

robust enough for the problem even though it was not designed to handle discrete design 

variables. Although f was a discrete design variable, fmincon was usable by rounding f to 
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the nearest integer within the subroutines of the optimization routine, as well as rounding 

the final value of f at the end of the optimization prior to evaluating it in the cost function.  

Figure 44: Optimal Geometry for rs=0.33 m Geodesic Sphere 

 
 

The skin thickness, 𝑡𝑠𝑘, was not optimized but was assumed to be 5 mm thick 

Vectran for the purpose of FEA evaluation of a triangular plate under 1.5 times sea level 

pressure with clamped edges as shown in Figure 45 . It was found that with a thickness of 

5mm, a skin with Vectran material properties as shown in Table 6, that the maximum 

displacement at the center of the skin was 0.59 mm. The maximum stress in the skin was 

49 MPa which is far below the maximum strength of Vectran of 3.2 GPa as shown in 

Table 6. This only occurred on the edges and center of the triangle, whereas the average 

stress in the skin was below 30 MPa. An optimized skin could be reinforced in the places  

of greatest stress, so that the average thickness could be designed for a stress of 30 MPa. 

One of the highest specific tensile strengths in available materials is found in Zylon, with 

a tensile strength of 5.8 GPa [33]. Assuming the skin thickness of 5 mm and a stress of 30 



 

116 
 

MPa from the FEA shown in Figure 45, the force/unit length was calculated in the 

structure by multiplying 𝑡𝑠𝑘𝑖𝑛 by stress. Taking this force/length and dividing by 5.8 GPa 

gave a minimum skin thickness of 0.0259 mm. This process is shown in equation (84). 

𝜎𝐹𝐸𝐴 ∙
𝑡𝑠𝑘𝑖𝑛𝐹𝐸𝐴
𝜎𝑦

= 𝑡𝑠𝑘𝑖𝑛𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  

 

 (84) 
 

Where: 
𝑡𝑠𝑘𝑖𝑛𝐹𝐸𝐴 = skin thickness used in FEA 
𝑡𝑠𝑘𝑖𝑛𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = minimum required skin thickness  
𝜎𝐹𝐸𝐴 = Stress calculated by FEA 
𝜎𝑦 = yield strength of material 
 

 

The minimum required skin thickness, 𝑡𝑠𝑘𝑖𝑛𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 0.0259 mm, gave a 

W/B=0.37 for the skin and a W/B=0.94 for the whole structure. The payload capability of 

a structure with a W/B=0.94 is shown in Figure 46. The mass of the structure would be 

0.94/(1-.94)=15.7 times the payload. For a diameter of 1 meter, the structure would have 

a mass of 580 grams and a payload of 37 grams. 
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Figure 45: FEA of Vectran Triangular Plate With Clamped Edges 

 

 

 
 

Displacement, meters 

Stress, Pa 
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Figure 46: Payload Capability for W/B=0.94 

 
 
 

A much more promising material to be used for the membrane is graphene. 

Graphene has a tensile strength of 135 GPa, [58], which would enable a skin only 0.001 

mm thick. A skin of graphene would have a W/B=0.001, which would result in an overall 

W/B=0.57. This would be an effectively weightless skin. Currently, graphene appears to 

only be available in small sizes on the order of several centimeters in length, but 

graphene represents the future potential of material research [58].  

Optimization of the skin would be a tradeoff between loss of buoyancy due to 

decreasing volume ( 𝑉𝑔𝑠) with skin displacement as a function of 𝑡𝑠𝑘, and a decrease in 

weight as a function of 𝑡𝑠𝑘. The loss in 𝑉𝑔𝑠 would occur when the skin displaced inward 
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due to external pressure, thus reducing the total volume of displaced air contributing to 

buoyancy. Diffusivity is a measure of the rate at which air could seep through the Mylar 

membrane. If this occurred the weight of the structure would increase due to added air 

molecules inside the skin of the structure. This is the same process as a leaking ship that 

sinks as it takes on water. Optimization of both W/B and diffusivity would be a multi-

objective problem in which the diffusivity of air through the reinforced Mylar membrane 

as a function of 𝑡𝑠𝑘 would be considered. The cost function would need to be adjusted to 

incorporate diffusivity with weighting values assigned to both W/B and diffusivity. A 

Pareto front could then be constructed to give designers a choice between design goals. A 

weighting function could also be formed such as maximizing mission time, where 

mission time is a function of both diffusivity and W/B. A Pareto front is constructed by 

giving different weights to the objective functions of a multi-objective optimization 

problem. If one objective is given a lot more weight than the other, the problem will be 

optimized primarily for that objective alone. If both objectives are given equal weight a 

solution that is half way between optimizing either objective will be the optimal point.  

4.6 Potential Missions 

The vacuum LTA vehicle has the potential to fulfill missions in transportation, 

surveillance, communications relay, and sensor platforms just like any other LTA 

vehicle. Whether a vacuum LTA vehicle is suited for any of these missions will depend 

on each of the design challenges covered previously. The most important hurdle the 

vacuum structure must clear is becoming LTA. Therefore minimizing W/B is the first 

priority. Based on W/B, a von Karman Efficiency can be predicted for a theoretical 
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vehicle that uses a vacuum LTA structure. This von Karman efficiency in turn predicts 

whether the vehicle could be economically used for transportation.   

One of the questions posed early in this study was if there was an ideal altitude at 

which a vacuum LTA structure could be designed to operate. Figure 47 is a plot of W/B 

for a vacuum LTA structure at various altitudes using altitude tables for a standard day 

[28]. Figure 33 and Figure 47 were created using the Matlab program titled LTApvalt.m , 

Appendix A.11. There are two lines with positive slope in Figure 47. The solid line 

represents a vacuum LTA structure designed to achieve W/B=0.95 at sea level. At higher 

altitudes, buoyancy decreases due to decreased air density, and therefore W/B increases. 

The dashed line represents the minimum W/B for vacuum LTA structures specifically 

designed to resist the pressure of a particular altitude (and no more). The dash dot line 

represents a vacuum LTA structure designed for 500 meters pressure altitude. This 

structure would have a lower W/B than the vacuum LTA structure designed for sea level, 

but would have a minimum altitude of 500 meters. Descending below 500 meters 

pressure altitude would cause the structure to exceed its design pressures, which could 

cause it to fail. Even though the structure designed for 500 meters has a better W/B at 

higher altitudes than the structure designed for sea level, the minimum W/B achievable is 

by the structure designed for sea level, while it is at sea level. This study shows that the 

optimal elevation for W/B is always the lowest available elevation. Therefore the lowest 

W/B achievable by a vacuum LTA structure is at sea level. For this reason all structures 

evaluated during the course of this study were evaluated for the W/B achievable at sea 

level standard atmosphere conditions in order to give a best case scenario as well as for 

the purpose of continuity. 
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Figure 47: Effect of Increasing Designed Deployment Elevation 

 
 

Figure 48 shows the W/B for LTA structures of various W/Bs at sea level. In 

order for a LTA structure to operate at high altitudes, it must have a low W/B at sea level. 

The maximum altitude for a given LTA structure is the altitude at which its W/B=1, 

which is the shaded region on both Figure 47 and Figure 48. This is the main reason 

cargo LTA vehicles were commonly operated below 1000 feet [9]. Sea level provides the 

maximum possible buoyancy for any LTA vehicle and is therefore the ideal place to 

operate cargo oriented LTA vehicles. Without low W/B, any mission requiring high 

altitude will be impossible for the vacuum LTA vehicle. A W/B=0.09 would be required 

for a LTA vehicle to operate at the design altitude of the Lockheed HALED [59].  
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Figure 48: Effect of Altitude on W/B 

 
 

The von Karman efficiency of the design space for a vacuum LTA vehicle is 

graphed in Figure 50. This vehicle was assumed to have a W/B= 0.8, an aerodynamic 

shroud, and a BLC device added that gave the same 𝐶𝐷 = 0.0169 as the BLC airship 

previously evaluated. The assumption was made that the shroud would increase the W/B 

to 0.9 and that it would give the spherical vacuum structure a more aerodynamic shape. A 

conceptual design of this vehicle is shown in Figure 49 and is composed of the Griffith 

Airfoil used as a body of revolution as described and drawn by Goldschmied [24], with 

three vacuum LTA spheres inside. 
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Figure 49: Conceptual Design of BLC Vacuum LTA Vehicle [24] 

 
Von Karman efficiency was plotted for sea level standard day conditions and 

payload was calculated according to equation (4). The lift for this vehicle was abysmal 

but the von Karman efficiency was competitive due to low drag. If the drag were 

increased to the value of a smooth sphere where 𝐶𝐷 = 0.1 [51] and the W/B remained at 

0.8, the resulting von Karman efficiency of the design space would look like Figure 51. 

This shows that the increased drag has a significant effect on von Karman efficiency, 

more so than the ten percent change in W/B. Therefore as long as the shroud could be 

made light enough for the structure to float, there is a good chance that improving the 

aerodynamics of the vacuum LTA structure beyond that of a sphere would be beneficial. 
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Figure 50: von Karman Efficiency at W/B=0.8 𝑪𝑫 = 𝟎.𝟎𝟏𝟔𝟗 
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Figure 51: von Karman Efficiency at W/B=0.8 𝑪𝑫 = 𝟎.𝟏 

 
 

The von Karman efficiency of a vacuum LTA vehicle with a W/B =0.8 or higher 

at sea level is unlikely to be used for transporting cargo. This conclusion was made based 

on the altitude limitations shown in Figure 48 and the poor von Karman efficiency shown 

in Figure 50 and Figure 51. If the BLC can be achieved on the vacuum LTA vehicle it 

would perform a little worse than the Zeppelin NT for a volume equal to the Zeppelin 

NT. Any BLC that could be applied to the vacuum LTA vehicle could also be applied to 

a LTA vehicle relying on a lifting gas, so that the vacuum LTA vehicle is at an efficiency 

disadvantage to the lifting gas airship. The vacuum LTA vehicle does pose advantages, 

however, due to its lack of need for a lifting gas, which would enable its use in areas 
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where shipping helium containers is cost prohibitive, or where the danger of fire due to 

hydrogen is unacceptable. Therefore it is conceivable that a mission suited for the 

vacuum LTA vehicle would be one requiring low payload and low altitude, such as an 

Intelligence, Surveillance, Reconnaissance (ISR) sensor platform for use in the urban 

environment. These missions could be conducted in hostile environments such as around 

chemical, biological, or radiation hazards. A geodesic sphere could be constructed so that 

certain beams were designed to buckle without damage. This would allow intentional 

buckling of the structure for storage purposes. When the structure needed to be re-

deployed it could be inflated to unbuckle the beams, deflated to cause positive buoyancy, 

and re-deployed. This would require a valve and a vacuum pump, which would require a 

power source, but not a lifting gas.  

A vacuum LTA vehicle with a radius=0.33 meters could fit through a standard 

door. If it had a W/B=0.8, it would have a total structure mass of 180 grams and be able 

to carry 46 grams at sea level. Any control systems, fuel, motors and payload would have 

to weigh less than 46 grams.   

4.7 Summary 

The rotating cylinder vehicle was deemed infeasible due to its high energy 

requirements due to torque drag. Even a rotating cylinder vehicle with a drag torque 

reduction of 99% below a single rotating cylinder would be infeasible at sea level. At 20 

km MSL the RCVLTAV with a 99% drag torque reduction would appear energetically 

viable, however the requirement to be lifted to altitude by an external aircraft, and the 

requirement for a 99% reduced drag torque make the RCVLTAV appear infeasible.  
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A grid stiffened sphere was optimized using two methods, one in which all 

constraints were simultaneously satisfied, and a non-linear programming optimization 

problem. Two material arrangements were found with a W/B<1. The first was an UHM 

carbon epoxy sphere with unidirectional stiffeners and a quasi-isotropic skin which was 

predicted to achieve a W/B=0.81. The second was a beryllium skin with UHM carbon 

fiber unidirectional stiffeners which achieved a W/B=0.79. This was achieved with a high 

geometric frequency of very thin stiffeners, which calls into question the feasibility of 

construction. Advanced automated methods of composite construction would be required 

to construct such high frequency geodesic grids. 

A geodesic frame composed of cylindrical beams made of UHM carbon fiber was 

predicted to achieve a W/B=0.57. A skin made of Mylar reinforced with Zylon was 

predicted to add an additional W/B=0.37, which would result in an overall W/B=0.94. A 

skin with the properties of graphene would have a W/B=0.001, which would result in a 

vehicle with a W/B=0.57. This conclusion was attained using FEA in conjunction with 

Euler buckling loads and published material properties. Optimization techniques included 

graphical, the genetic algorithm function in Matlab, and the fmincon function in Matlab.  

The von Karman efficiency for a vacuum LTA vehicle with a structural W/B=0.8 

was evaluated. The vacuum LTA vehicle could not compete with a lifting gas LTA 

vehicle as far as efficiency is concerned. It would, however, have the unique property of 

not relying on a lifting gas. This could make the vacuum LTA vehicle suitable for 

missions in which efficiency was not of primary concern. 
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V. Conclusions and Recommendations 

5.1 Chapter Overview 

This study began by investigating LTA vehicles to include their structure, 

missions, and design challenges. The buckling of vacuum structures was combined with 

buoyancy to find several structures that could possibly achieve positive buoyancy using a 

vacuum. The performance of vehicles using these vacuum structures were then predicted 

using von Karman Efficiency. 

5.2 Conclusions of Research 

Eight questions were posed in the introduction section. The answers to these 

questions are available in Table 10. 

Table 10: Research Questions Revisited 

1 Can positive buoyancy be achieved by a structure in air using a vacuum? 
 Probably. The grid stiffened structure could possibly achieve positive 

buoyancy using a vacuum but advanced automated construction of large 
numbers of stiffeners would be required. The beryllium and UHM 
carbon epoxy hybrid was the most successful structure investigated, with 
a predicted W/B=0.79. The geodesic sphere appears to provide a feasible 
means by which positive buoyancy can be achieved by a vacuum 
structure using available materials such as UHM carbon tubes and Zylon 
reinforced skin. A W/B=0.94 for the geodesic structure was predicted, 
with W/B=0.57 attributed to the frame, and W/B=0.37 attributed to the 
skin. Graphene would far exceed the material requirements. The rotating 
cylinder vehicle cannot feasibly achieve positive buoyancy. 

2 Is a vacuum LTA structure a feasible platform for any existing missions? 
 Yes. The vacuum LTA structure could potentially be used for any 

mission not requiring a low W/B. This would include any mission 
suitable for the characteristics of a LTA vehicle that do not require a low 
von Karman efficiency. A mission that appears particularly suited for the 
vacuum LTA vehicle is a low altitude sensor platform for ISR in hostile 
environments. 

3 What is the ideal internal pressure of a partial vacuum LTA structure? 
 The closer the internal pressure can be to absolute vacuum, the better 
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W/B achievable by the vacuum LTA structure. 
4 What is the ideal operating altitude of a vacuum LTA structure? 
 Sea level is the ideal operating altitude. Any increase in altitude results 

in an increase in W/B as shown in Figure 47.  
5 Are there viable geometric shapes for a vacuum LTA structure? 
 The sphere is the best geometric shape, but geodesic approximations to 

the sphere appear viable as well. The icosahedron actually achieved 
lower W/B than more complicated geodesic shapes due to its symmetry 
and sparse structure. 

6 Do construction techniques exist which can construct the required 
geometric shapes? 

 The answer appears unlikely for the grid stiffened structure as long as it 
is made of carbon fibers. It is possible that a dissolvable mandrill could 
be constructed by a rapid prototype machine and carbon fiber applied 
using continuously wound fibers using an automated filament winder. 
The thicknesses of the skin and stiffeners of the grid stiffened structure 
would also pose a problem unless the structure was made very large. It 
appears the geodesic sphere could be constructed because the optimal 
shape is composed of only 30 tubes of reasonable thickness. The 
challenge to building this structure lies in connecting the tubes at the 
vertices. 

7 What are the critical material properties for a vacuum LTA structure? 
 𝐸 = Young′s modulus of elasticity 

𝜎𝑐𝑦 = compressive yield strength 
𝜌 = material density 

𝜎𝑦 = tensile yield strength 
A material search can be performed for the geodesic frame or isogrid 
structure by looking for the maximum 𝐸/𝜌2. The 𝜎𝑐𝑦 must also be 
checked as it may be the active constraint as in the case of Beryllium. 
For skin, permeability is important, as well as tensile yield strength 𝜎𝑦 
and 𝜌. A material search for the ideal skin could be found by searching 
for the maximum 𝜎𝑦/𝜌 

8 Do materials exist from which a vacuum LTA structure can be 
constructed? 

 Yes. UHM carbon fiber in an epoxy matrix is the most likely material to 
be used for the structure. Stiffer fibers and less dense matrix materials 
are the most promising area for material improvement. For the 
membrane a high specific strength material like Zylon appears most 
promising. 
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5.3 Significance of Research 

A vacuum LTA structure would replace the need for a lifting gas. If the risk of 

fire is unacceptable for a particular mission and helium is unavailable due to reduced 

supply, vacuum LTA structures may be the best alternative. At the current state of 

research a vacuum structure can not achieve W/Bs as low as LTA structures containing 

helium or hydrogen lifting gases. Nevertheless, the construction of a vacuum LTA 

structure would constitute a technological milestone in structural design. The largest 

contribution of this research is that it appears to be the first time FEA and non-linear 

programming optimization techniques have been used to show that a structure can 

achieve positive buoyancy in air using a vacuum. 

5.4 Recommendations for Future Research 

Recommended future research includes optimization of the skin for diffusivity 

and deflection, evaluation of the bending effects due to membrane loads on the sides of 

the beams using FEA, and experimental analysis of both membrane deflection and global 

buckling of the icosahedron in order to validate the FEA models. An experiment could be 

performed on inexpensive materials such as fiberglass in order to perfect construction 

techniques and validate W/B predictions. This experiment could be performed by 

building the structure with geometry optimized for the cheaper material, predicting the 

pressure at which it will fail using the cheaper material, then removing the air from inside 

of the structure using a vacuum pump while measuring the pressure inside and outside of 

the structure to observed the critical pressure at which the structure fails. This would be a 

useful experiment to not only validate the design, but also to overcome the difficulties of 
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building a structure that can withstand an atmosphere of external pressure without 

leaking.  

A study of the diffusivity of various membranes would be necessary to determine 

a suitable skin for the geodesic structure. A vacuum LTA vehicle could potentially 

require less servicing than a helium LTA vehicle because the membrane preventing the 

equalization of pressure would require pores smaller than the critical diameter of an 

Oxygen molecule of 2.8 Å as opposed to the critical diameter of a Helium molecule of 2 

Å. [1]. The pressure gradient across the membrane is a factor in diffusivity rates as well, 

so that the relative diffusivity rates between a traditional helium filled membrane which 

has very little pressure gradient, and the theoretical air displacing vacuum membrane 

which has an atmosphere pressure gradient are not clear without further study.  

An optimization should be performed on the skin where W/B is minimized by 

varying skin thickness where W/B is affected by volume loss due to membrane 

displacement and weight due to thickness. The skin will most likely need to be composed 

of a low diffusivity membrane such as Mylar and a high strength reinforcement cloth 

such as Zylon.  

The rotating cylinder concept could be further studied by researching the torque 

and Ω𝑐𝑟𝑖𝑡 for gap sizes between 1 and 0. Depending on the results of this study rotating 

cylinder LTA vehicle filled with helium could be evaluated for feasibility using von 

Karman efficiency. 
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Appendix A: Matlab Code 

A.1 Optimization Routine (LTA_opt.m) 

%LTA fmincon and Genetic Algorithm 
%Written by 1st Lt Justin Mason, Capt Trent Metlen, and Brian Cranston 
  
clear; close all; clc; 
  
%********************************************************************** 
% This program is for MECH 620 optimization of a lighter than air (LTA) 
% icosahedron structure. 
% 
*********************************************************************** 
tic 
% Scaling factors for design variables for optimization routine:[f r t] 
 
scaling = [1 1 1]; 
  
%% Optimization This section picks which optimization routine to run 
  
% Set upper and lower bounds 
ub=[1.1 1e-1 1e-2]./scaling; 
lb=[0.9 1e-5 1e-6]./scaling; 
  
% Set initial guess 
% Note: this is only used in fmincon 
xo = [1 4e-3 2e-4]./scaling; 
  
optimization = 'fmincon'; 
%optimization = 'genetic'; 
  
switch optimization 
    case 'genetic' 
%% Genetic Algorithm Optimization 
% Run an optimization routine with a genetic algorithm 
  
% A = [f r t] 
% g3 = inequality const 
A=[0 -1 .5]; b=0; 
nvars = 3; 
IntCon = 1; 
options=gaoptimset('display','iter','PopulationSize',10); 
[x,fval,exitflag,output,population,scores] =  ga(@(x) 
Cost(x,scaling),nvars,A,b,[],[],lb,ub,@(x) 
Constraints(x,scaling,krieging),options); 
x = x.*scaling; 
  
    case 'fmincon' 
%% fmincon Optimization 
% This section runs a fmincon optimization routine 
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% A = [f r t] 
% g3 = inequality const 
A=[0 -1 .5]; b=[0]; 
options=optimset('algorithm','interior-point','display','iter'); 
[x,fval] =  fmincon(@(x) cost(x,scaling),xo,A,b,[],[],lb,ub,@(x) 
Constraints(x,scaling,krieging),options); 
x = x.*scaling; 
end 
toc 

A.2 Optimization Sub-Routine: Cost Function (Cost.m) 

function [ cost ] = Cost( x,scaling) 
  
load geometry1.mat 
x=x.*scaling; 
f = round(x(1)); 
rcb = x(2); 
tcb = x(3); 
  
% Get sphere parameters 
[par] = Sphere_parameters(x); 
% Constants 
rhocb = par(1); 
rhosk = par(2); 
rs = par(3); 
tsk = par(4); 
% lcb = par(5); 
% Volume=par(6); 
rhoair=1.225; %kg/m^3, density of air 
buoyancy=rhoair*Volume; 
cost = (rhocb*(60*pi*tcb*rcb*(lcb)*f^2)+Area*tsk*rhosk)/buoyancy;  
end 

A.3 Optimization Sub-Routine: Sphere Parameters (Sphere_parameters.m) 

function [ par ] = Sphere_parameters( x ) 
 
% Capt Trent Metlen, 1st Lt Justin Mason, and Brian Cranston 
 
f = round(x(1)); 
r = x(2); 
t = x(3); 
load geometry1.mat 
%average lengths of geodesic spheres f=1:10 for rs=0.33 
store_lcb = [0.3470    0.1926    0.1313    0.0993    0.0797    0.0666    
0.0572    0.0501    0.0445    0.0401];  
Icb = pi*((r+.5*t)^4-(r-.5*t)^4)/4;   %area moment of inertia 
rhosk = 1400; %kg/m^3 Ref 1 
rs=0.33; 
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tsk=1.6e-5; 
lcb = store_lcb(round(f)); 
sigcbcy = 1e9; %UHM carbon epoxy 
Ecb = 450e9;    %modulus of elaticity UHM carbon epoxy 
rhocb = 1522;  %density UHM carbon epoxy 
 
par = [rhocb;rhosk;rs;tsk;lcb;Volume;sigcbcy;Ecb;Icb]; 
   
end 

A.4  Optimization Sub-Routine: Constraints (Constraints.m) 

function [ G,ceq ] = Constraints( x,scaling) 
  
x = x.*scaling; 
f = round(x(1)); 
rcb = x(2); 
tcb = x(3); 
  
[par] = Sphere_parameters(x); 
sigcbcy = par(7); 
rs = par(3); 
g1= abs(sigmax)-sigcbcy; 
[sigmax g2] = Analyze_beam(f,rcb,tcb); 
g4= rcb+.5*tcb-sqrt(3)*rs/4/f; 
% nonlinear constraints g1, g2, g4  
G = [g1; g2 ; g4]; 
  
ceq = []; 
end 
 

A.5 Optimization Sub-Routine: Finite Element Program  

function [ sigmax g2 ] = Analyze_beam(f,r,t) 
%  1stLt Justin Mason and Dr Black’s Finite Element Class 2012 
%  Create and analyze FE models from *.dat files 
 
%% Create the *.dat file 
Datcreate([round(f) r t]) 
%% Read *.dat file 
model=Datread_beam('icos.dat'); 
% disp('Read in dat file'); 
  
%% Initialize 
dof = 6; 
N = model.ngrid*dof; 
K = zeros(N,N); 
  
%% Generate global K matrix 
for element_index = 1 : model.ncbar ; 
    EID = model.cbar.EID(element_index); 
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    PID = model.cbar.PID(EID); 
    MID = model.pbar.MID(PID); 
    G1 = model.cbar.G1(EID); 
    G2 = model.cbar.G2(EID); 
    A = model.pbar.A(PID); 
    E = model.mat1.E(MID); 
    L = sqrt((model.grid.X1(G2)-model.grid.X1(G1))^2+... 
        (model.grid.X2(G2)-model.grid.X2(G1))^2+... 
        (model.grid.X3(G2)-model.grid.X3(G1))^2); 
    
    I_zz=model.pbar.I1(PID); 
    I_yy=model.pbar.I2(PID); 
    J=model.pbar.J(PID); 
    nu=model.mat1.NU(MID); 
    G=E/(2*(1+nu)); 
    X = A*E/L; 
    Y_1 = 12*E*I_zz/L^3; 
    Y_2 = 6*E*I_zz/L^2; 
    Y_3 = 4*E*I_zz/L; 
    Y_4 = 2*E*I_zz/L; 
    Z_1 = 12*E*I_yy/L^3; 
    Z_2 = 6*E*I_yy/L^2; 
    Z_3 = 4*E*I_yy/L; 
    Z_4 = 2*E*I_yy/L; 
    S = G*J/L; 
elemK  = [  X    0    0    0    0    0   -X    0    0    0    0    0 ;  
            0   Y_1   0    0    0   Y_2   0  -Y_1   0    0    0   Y_2; 
            0    0    Z_1  0  -Z_2   0    0    0  -Z_1   0  -Z_2   0 ; 
            0    0    0    S    0    0    0    0    0   -S    0    0 ; 
            0    0  -Z_2   0   Z_3   0    0    0   Z_2   0   Z_4   0 ; 
            0   Y_2   0    0    0   Y_3   0  -Y_2   0    0    0   Y_4; 
           -X    0    0    0    0    0    X    0    0    0    0    0 ;  
            0  -Y_1   0    0    0  -Y_2   0   Y_1   0    0    0  -Y_2; 
            0    0  -Z_1   0   Z_2   0    0    0   Z_1   0   Z_2   0 ; 
            0    0    0   -S    0    0    0    0    0    S    0    0 ; 
            0    0  -Z_2   0   Z_4   0    0    0   Z_2   0   Z_3   0 ; 
            0   Y_2   0    0    0   Y_4   0  -Y_2   0    0    0   Y_3]; 
    % 
    % 
   %------------------------------------------ 
   % Create and apply transformation matrix T 
   %------------------------------------------ 
   T=zeros(12,12); 
   V=[model.cbar.X1(EID);model.cbar.X2(EID);model.cbar.X3(EID)]; 
   Vx=[model.grid.X1(G2)-model.grid.X1(G1),... 
       model.grid.X2(G2)-model.grid.X2(G1),... 
       model.grid.X3(G2)-model.grid.X3(G1)]; 
   Vz=cross(Vx,V); 
   Vy=cross(Vz,Vx); 
   Vx_e=Vx/norm(Vx); 
   Vy_e=Vy/norm(Vy); 
   Vz_e=Vz/norm(Vz); 
   delta = [Vx_e;Vy_e;Vz_e]; 
   z=zeros(3,3); 
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   T=[delta z z z; z delta z z;z z delta z;z z z delta]; 
   TelemK=T'*elemK*T; 
    
   %------------------------------------------ 
   % Place elemK into global K 
   %------------------------------------------ 
    G1_index=find(model.grid.ID==G1); 
    G2_index=find(model.grid.ID==G2); 
    dofs1=(G1_index-1)*dof+1:G1_index*dof; 
    dofs2=(G2_index-1)*dof+1:G2_index*dof; 
    K(dofs1,dofs1)=K(dofs1,dofs1)+TelemK(1:dof,1:dof); 
    K(dofs2,dofs1)=K(dofs2,dofs1)+TelemK(dof+1:2*dof,1:dof); 
    K(dofs1,dofs2)=K(dofs1,dofs2)+TelemK(1:dof,dof+1:2*dof); 
    K(dofs2,dofs2)=K(dofs2,dofs2)+TelemK(dof+1:2*dof,dof+1:2*dof); 
    
end 
% disp('Generated global K matrix'); 
  
%% Create force vector 
F = zeros(N,1);  %Initialize  
for ctr = 1 : model.nforce %Cycle through all FORCE1 cards 
G_index=find(model.grid.ID==double(model.force.G(ctr))); 
fdofs=(G_index-1)*dof+1:(G_index-1)*dof+3; 
Vxf=[model.grid.X1(model.force.G2(ctr))-
model.grid.X1(model.force.G1(ctr));... 
    model.grid.X2(model.force.G2(ctr))-
model.grid.X2(model.force.G1(ctr));... 
    model.grid.X3(model.force.G2(ctr))-
model.grid.X3(model.force.G1(ctr))]; 
Vx_e_force=Vxf/norm(Vxf); 
%Force vec=model.force.F 
F(fdofs)=F(fdofs)+Vx_e_force*model.force.F(ctr); 
end 
% disp('Created Force vector'); 
  
%% GRDSET Cards  
% cdof=[]; 
cdof=false(N,1); 
for ctr = 1 : model.ngrdset %Cycle through all grdset cards  if 
model.ngrdset 
    for ctr2=1:length(model.grdset.PS) 
        dim=str2double(model.grdset.PS(ctr2)); 
        cdof((0:(model.ngrid-1))*dof+dim)=true; 
%         cdof=[cdof,((0:(model.ngrid-1))*dof+dim)]; 
    end 
end 
 
%% SPC Cards  
for ctr = 1 : model.nspc  %Cycle through all SPC1 cards 
    for dim_ctr=1:length(model.spc.C{ctr}) 
        dim=str2double(model.spc.C{ctr}(dim_ctr)); 
        G_idx=find(model.grid.ID==double(model.spc.G1(ctr))); 
        cdof((G_idx-1)*dof+dim)=true; 
    end 
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end 
udof=~cdof; 
  
%% Compute Displacements 
D = zeros(N,1);  %create displacement vector 
D(udof) = K(udof,udof)\F(udof);  % solve for displacements  
F(cdof) = K(cdof,:)*D;  % compute reaction forces 
% disp(' ') 
% disp('        Displacements') 
% disp('Node      T1          T2          T3          R1          R2          
R3'); 
% disp('----    ------      -------     -------     -------     -------     
-------'); 
  
for ctr = 1 : model.ngrid 
   row = (ctr-1)*dof+1 : ctr*dof; 
%    disp(sprintf('%4d  %10.2e  %10.2e  %10.2e  %10.2e  %10.2e  
%10.2e',... 
%        full(model.grid.ID(ctr)),D(row,1))); 
end 
  
% %% Reaction Forces 
% disp(' ') 
% disp('        Reaction Forces') 
% disp('Node      F1          F2          F3          M1          M3          
M3'); 
% disp('----    ------      -------     -------     -------     -------     
-------'); 
%  
% for ctr = 1 : model.ngrid 
%   row = (ctr-1)*dof+1 : ctr*dof; 
%    disp(sprintf('%4d  %10.2e  %10.2e  %10.2e  %10.2e  %10.2e  
%10.2e',... 
%        full(model.grid.ID(ctr)),F(row,1))); 
% end 
%% Stress and strains 
  
% disp(' ') 
% disp('        Stress') 
% disp('Element      SigmaX          Taut T         Tau Y       Tau 
Z'); 
% disp('----          ------          -------       -------     -------
'); 
sig_all = zeros(1,length(model.ncbar));g2 = sig_all; 
for ctr=1:model.ncbar 
    EID = model.cbar.EID(ctr); 
    PID = model.cbar.PID(EID); 
    MID = model.pbar.MID(PID); 
    G1 = model.cbar.G1(EID); 
    G2 = model.cbar.G2(EID); 
    A = model.pbar.A(PID); 
    E = model.mat1.E(MID); 
    L = sqrt((model.grid.X1(G2)-model.grid.X1(G1))^2+... 
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        (model.grid.X2(G2)-model.grid.X2(G1))^2+... 
        (model.grid.X3(G2)-model.grid.X3(G1))^2); 
    
    I_zz=model.pbar.I1(PID); 
    I_yy=model.pbar.I2(PID); 
    J=model.pbar.J(PID); 
    nu=model.mat1.NU(MID); 
    G=E/(2*(1+nu)); 
     
   T=zeros(12,12); 
   V=[model.cbar.X1(EID);model.cbar.X2(EID);model.cbar.X3(EID)]; 
   Vx=[model.grid.X1(G2)-model.grid.X1(G1),... 
       model.grid.X2(G2)-model.grid.X2(G1),... 
       model.grid.X3(G2)-model.grid.X3(G1)]; 
   Vz=cross(Vx,V); 
   Vy=cross(Vz,Vx); 
   Vx_e=Vx/norm(Vx); 
   Vy_e=Vy/norm(Vy); 
   Vz_e=Vz/norm(Vz); 
   delta = [Vx_e;Vy_e;Vz_e]; 
   z=zeros(3,3); 
   T=[delta z z z; z delta z z;z z delta z;z z z delta]; 
   TelemK=T'*elemK*T; 
    
   G1_index=find(model.grid.ID==G1); 
   G2_index=find(model.grid.ID==G2); 
   dofs1=(G1_index-1)*dof+1:G1_index*dof; 
   dofs2=(G2_index-1)*dof+1:G2_index*dof; 
   D_local1=[D(dofs1);D(dofs2)]; 
   D_local=T*D_local1; 
   u1=D_local(1,1); v1=D_local(2,1); w1=D_local(3,1); 
   u2=D_local(7,1); v2=D_local(8,1); w2=D_local(9,1); 
   theta_x1=D_local(4,1); theta_y1=D_local(5,1); theta_z1=D_local(6,1); 
   theta_x2=D_local(10,1); theta_y2=D_local(11,1); 
theta_z2=D_local(11,1); 
   x=0; 
   y=r; 
   z=0; 
   cy=2;cz=2; 
   M_z=E*I_zz*((-6/L^2+12*x/L^3)*v1+(-4/L+6*x/L^2)*theta_z1+(6/L^2-
12*x/L^3)*v2+(-2/L+6*x/L^2)*theta_z2); 
   V_z=E*I_zz*(12/L^3*v1+6/L^2*theta_z1-12/L^3*v2+6/L^2*theta_z2); 
   M_y=E*I_yy*((-6/L^2+12*x/L^3)*w1-(-4/L+6*x/L^2)*theta_y1+(6/L^2-
12*x/L^3)*w2-(-2/L+6*x/L^2)*theta_y2); 
   V_y=E*I_yy*(12/L^3*w1-6/L^2*theta_y1-12/L^3*w2-6/L^2*theta_y2); 
   Normal=A*E/L*(u2-u1+v2-v1+w2-w1); 
   Torsion=G*J*(theta_x2-theta_x1+theta_y2-theta_y1+theta_z2-
theta_z1)/L; 
   Sigma_x=Normal/A-M_z*y/I_zz-M_y*z/I_yy; 
   Tau_t=Torsion*(r+t/2)/J; 
   Tau_y=cy*V_y/A; 
   Tau_z=cz*V_z/A; 
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%    disp(sprintf('%4d       %10.2e       %10.2e    %10.2e    
%10.2e',... 
%        full(EID),full(Sigma_x),full(Tau_t),full(Tau_y),full(Tau_z))); 
   sig_all(2*ctr-1) = Sigma_x/2-sqrt((Sigma_x/2)^2+Tau_t^2); 
%    disp(sprintf('sig1      %10.2e',sig_all(2*ctr-1))) 
   g(2*ctr-1,1) = Sigma_x*A-pi^2*E*I_zz/L/.5; 
   x=L; 
   M_z=E*I_zz*((-6/L^2+12*x/L^3)*v1+(-4/L+6*x/L^2)*theta_z1+(6/L^2-
12*x/L^3)*v2+(-2/L+6*x/L^2)*theta_z2); 
   V_z=E*I_zz*(12/L^3*v1+6/L^2*theta_z1-12/L^3*v2+6/L^2*theta_z2); 
   M_y=E*I_yy*((-6/L^2+12*x/L^3)*w1-(-4/L+6*x/L^2)*theta_y1+(6/L^2-
12*x/L^3)*w2-(-2/L+6*x/L^2)*theta_y2); 
   V_y=E*I_yy*(12/L^3*w1-6/L^2*theta_y1-12/L^3*w2-6/L^2*theta_y2); 
   Normal=A*E/L*(u2-u1+v2-v1+w2-w1); 
   Torsion=G*J*(theta_x2-theta_x1+theta_y2-theta_y1+theta_z2-
theta_z1)/L; 
   Sigma_x=Normal/A-M_z*y/I_zz-M_y*z/I_yy; 
   Tau_t=Torsion*(r+t/2)/J; 
   Tau_y=cy*V_y/A; 
   Tau_z=cz*V_z/A; 
  
%    disp(sprintf('           %10.2e       %10.2e    %10.2e    
%10.2e',... 
%        full(Sigma_x),full(Tau_t),full(Tau_y),full(Tau_z))); 
  
   g(2*ctr,1) = -Sigma_x*A-4*pi^2*E*I_zz/L^2; 
   sig_all(2*ctr) = Sigma_x/2-sqrt((Sigma_x/2)^2+Tau_t^2); 
%    disp(sprintf('sig1      %10.2e',sig_all(2*ctr))) 
end 
g2 = max(full(g)); 
sigmax = min(sig_all); 
sigmean=mean(sig_all); 
  
% disp('Done analyze_beam') 
end 

A.6  Optimization Sub-Routine: Datcreate (Datcreate.m) 

function [ ] = Datcreate( x ) 
  
% 1stLt Justin Mason 
% This program writes a .dat file for optimization routine of an 
% icosahedron  
%% ************************************************ 
% THIS FUNCTION MUST BE RUN WITHIN LTAgeod.mat 
% inputs: rcb, tcb, XYZ, beam, & force  
%% Define Constants 
   
[XYZ, beam, force, nV, centroid] = LTAgeod2(x); 
  
f = x(1); 
rcb = x(2); 
tcb = x(3); 
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A = 2*pi*rcb*tcb;    %area 
I1 = pi*((rcb+.5*tcb)^4-(rcb-.5*tcb)^4)/4;   %area moment of inertia 
I2 = I1;   %area moment of inertia 
J = pi*((rcb+.5*tcb)^4-(rcb-.5*tcb)^4)/2;    %torsional constant 
E = 450e9;    %modulus of elasticity of carbon epoxy  
nu = 0.33;   %poisson's ratio of carbon epoxy 
rho = 1522;  %density of carbon epoxy 
 
%% Open file and create header 
fileName = 'icos.dat'; 
fid = fopen(fileName,'w'); 
header = {'ID ICOS OPT';'SOL 101';'CEND';'TITLE = ICOS OPT'; 
    'SUBTIT = MECH 620';'LABEL = ICOSAHEDRON';'SPC = 1'; 
    'LOAD = 1';'DISP = ALL';'STRESS = ALL';'BEGIN BULK';}; 
for ctr = 1:length(header) 
    fprintf(fid,strcat(header{ctr},'\n')); 
end 
  
%% Write XYZ Locations 
  
fprintf(fid,'$       Geometry\n'); 
for ctr = 1:length(XYZ) 
    fprintf(fid,'GRID,%d,,%.4f,%.4f,%.4f\n',XYZ(ctr,:)); 
end 
  
%% Write beam Conectivity 
  
fprintf(fid,'$       Beam Connectivity\n'); 
for ctr = 1:length(beam) 
    idx = [find(XYZ(:,1)==beam(ctr,2)) find(XYZ(:,1)==beam(ctr,3))]; 
    v = XYZ(idx,2:4); 
    orient = null(v); 
    fprintf(fid,'CBAR,%d,1,%d,%d,%.4f,%.4f,%.4f\n',beam(ctr,:),orient); 
end 
  
%% Write beam and Material Properties 
  
fprintf(fid,'$       Beam and Material Properties\n'); 
fprintf(fid,'PBAR,1,1,%.10e,%.10e,%.10e,%.10e,0.0\n',A,I1,I2,J); 
fprintf(fid,'MAT1,1,%.4f,,%.4f,%.4f\n',E,nu,rho); 
  
%% Write Boundary Conditions 
  
fprintf(fid,'$       Boundary Conditions\n'); 
fprintf(fid,'GRDSET,,,,,,,\n'); 
fprintf(fid,'SPC1,1,123456,%d\n',nV); 
for ctr = nV+1:nV+length(centroid)+1 
    fprintf(fid,'SPC1,1,123456,%d\n',XYZ(ctr,1)); 
end 
for ctr = 1:length(force) 
fprintf(fid,'FORCE1,1,%d,%.4f,%d,%d\n',force(ctr,:)); 
end 



 

141 
 

% fprintf(fid,'FORCE1,1,1,1000,1,2\n'); 
fprintf(fid,'ENDDATA'); 
  
fclose(fid); 
  
end 

A.7 Optimization Sub-Routine: Geodesic Sphere Geometry (LTAgeod2.m) 

function [ XYZ, beam, force, nV, centroid] = LTAgeod2( x ) 
%Capt Trent Metlen 10/10/2012 
  
% Frequency of triangles per major triangle (1 for icosahedron) 
  
f=x(1); 
rcb = x(2); 
tcb = x(3); 
r=0.33; 
  
% Angles in spherical coordinates used to determine icosahedron 
vertices 
phi1=0.4636476090008; 
phi2=pi/2-phi1; 
theta1=2*pi/5; 
  
% Atmospheric Conditions 
Pa=1.5*101325; %pascals, sea level pressure (safety factor 1.5)  
  
% Icosahedron verticies in spherical coordinates 
Vp=[0 pi/2;0 phi1;theta1 phi1;2*theta1 phi1;3*theta1 phi1;4*theta1 
phi1; 0.5*theta1 -phi1;1.5*theta1 -phi1;2.5*theta1 -phi1;3.5*theta1 -
phi1; 4.5*theta1 -phi1;0 -pi/2]; 
  
% Basic information on geodesic shape 
nV=10*f^2+2; %number of vertices 
nt=20*f^2;  %number of triangles 
ne=30*f^2; %number of edges 
  
% Find all vertices of first 5 major triangles for geoesic sphere 
V=[r*ones(nV,1) ones(nV,2)]; 
V(1,2:3)=Vp(1,:); 
V(nV,2:3)=Vp(12,:); 
K=1; 
  
for I=1:f 
    for J=1:I*5 
        V((K+J),2:3)=[(J-1)*2*pi/(I*5) pi/2-I*phi2/f]; 
    end 
    J; 
    K=K+J; 
end 
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% Find all vertices of next 10 major triangles 
for I=1:f 
    for J=1:5*f 
        V((K+J),2:3)=[I*(pi/(5*f))+(2*pi/(5*f))*(J-1) phi1-2*phi1*I/f]; 
    end 
    J; 
    K=K+J; 
end 
  
% Find all vertices of last 5 major triangles 
for I=1:f 
    if I<f 
        for J=1:5*(f-I) 

V((K+J),2:3)=[pi/5+(2*pi/(5*(f-I)))*(J-1) -pi/2+phi2-phi2*I/f]; 
        end 
        K=K+J; 
    end 
end 
  
% Convert from spherical coordinates to cartesian coordinates 
[x y z]=sph2cart(V(:,2)',V(:,3)',V(:,1)'); 
leg=sqrt((x(1)-x(2))^2+(y(1)-y(2))^2+(z(1)-z(2))^2); 
  
% Create xyz matrix in cartesian coordinates 
XYZ=[x' y' z']; 
  
% Find beam matrix for icosahedron (f=1) 
if f==1 
    beam=[1 2;1 3;1 4;1 5;1 6; 
        2,11;2,7;3,7;3,8;4,8;4,9;5,9;5,10;6,10;6,11; 
        7,12;8,12;9,12;10,12;11,12; 
        2,3;3,4;4,5;5,6;6,2; 
        7,8;8,9;9,10;10,11;11,7]; 
    n=length(beam); 
    beam=[(1:n)' beam]; 
     
else %for more complex geodesic spheres (f>1) 
     
    % Split up variables into matrices of planes in sphere 
    p=2*f+f+1; 
    plane = cell(1,2*f+1); 
    plane{1}=[1 XYZ(1,:)]; 
     
    if f>1 
        cntr=1; 
        for I = 2:f 
            cntr2=(I-1)*5; 
            plane{I}=[(cntr+1:cntr2+cntr)' (XYZ(cntr+1:cntr2+cntr,:))]; 
            cntr=cntr2+cntr; 
        end 
    end 
     
    for I=f+1:2*f+1 
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        plane{I}=[(cntr+1:cntr+f*5)' XYZ(cntr+1:cntr+f*5,:)]; 
        cntr=cntr+f*5; 
    end 
     
    J=0; 
     
    for I=p-(f-1):p-1 
        J=J+1; 
        plane{I}=[(cntr+1:cntr+(f-J)*5)' XYZ(cntr+1:cntr+(f-J)*5,:)]; 
        cntr=cntr+(f-J)*5; 
    end 
    plane{p}=[cntr+1 XYZ(end,:)]; 
     
    % Determine number of planes 
    [sp1,sp2]=size(plane); 
     
    % Create connections between top point and plane 2 
    cntr=1:cntr; 
    beam=[1 2;1 3;1 4;1 5;1 6]; %beam=[counter(n) node1 node2] 
    n=6; %n is the beam counter 
     
    % Create connections between coplaner nodes (creates horizontal 
rings) 
    for I=2:sp2-1 
        [s1,s2]=size(plane{1,I}); 
        for J=1:s1-1 
            beam(n,:)=[plane{1,I}(J,1) plane{1,I}(J+1,1)]; 
            n=n+1; 
        end 
        beam(n,:)=[plane{1,I}(s1,1) plane{1,I}(1,1)]; 
        n=n+1; 
    end 
     
   % Create connections between planes in triangular cap starting plane 
2 to 3 
    e=[1 1 1]; %edge point connections (points lying on edge of major 
triangles) 
    c=[1 1]; %center point connections (points not lying on edges of 
major triangles) 
     
    for I=2:f 
        % B=matrix of e's and c's where e's=1 and c's=0 
        B=[1 zeros(1,I-2) 1 zeros(1,I-2) 1 zeros(1,I-2) 1 zeros(1,I-2) 
1 zeros(1,I-2)]; 
        [s1,s2]=size(B); 
% A=matrix of points where the first row are start points, second row  
% end points, will be added to beam matrix when loop is complete 
 
% first point connections 
        A=[plane{1,I}(1,1)*e; plane{1,I+1}(end,1) plane{1,I+1}(1,1) 
plane{1,I+1}(2,1)]; 
        cntr=2; 
        for J=2:s2 
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            if B(J)>0 
                m=e; 
            else 
                m=c; 
            end 
            % All other point connections on plane 
            A=[A(1,:) plane{1,I}(J,1)*m; A(2,:) 
(plane{1,I+1}(cntr:cntr+length(m)-1,1))']; 
            cntr=cntr+length(m)-1; 
        end 
        [s4,s3]=size(A); 
        % Beam matrix is updated by A matrix 
        beam(n:n+s3-1,:)=[A(1,:)' A(2,:)']; 
        n=n+s3; 
    end 
     
    % Create connections from bottom of triangular cap to bottom of 
middle triangles 
    m=[1 1]; 
     
    for I=1:f 
        s2=f*5; 
        A=[plane{1,f+I}(1,1)*m; plane{1,f+I+1}(end,1) 
plane{1,f+I+1}(1,1)]; 
        cntr=1; 
        for J=2:s2 
            A=[A(1,:) plane{1,f+I}(J,1)*m; A(2,:) 
(plane{1,f+I+1}(cntr:cntr+1,1))']; 
            cntr=cntr+1; 
        end 
        [s4,s3]=size(A); 
        beam(n:n+s3-1,:)=[A(1,:)' A(2,:)']; 
        n=n+s3; 
    end 
     
    % Create connections from bottom of middle triangles to last plane 
% before endpoint 
     
    e=[1]; 
    c=[1 1]; 
     
    for I=1:f-1 
        B=[1 zeros(1,f-I) 1 zeros(1,f-I) 1 zeros(1,f-I) 1 zeros(1,f-I) 
1 zeros(1,f-I)]; 
        [s1,s2]=size(B); 
        A=[plane{1,2*f+I}(end,1)*c; plane{1,2*f+I+1}(end,1) 
plane{1,2*f+I+1}(1,1)]; 
        cntr=1; 
        for J=1:s2-1 
            if B(J)>0 
                m=e; 
            else 
                m=c; 
            end 
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            A=[A(1,:) plane{1,2*f+I}(J,1)*m; A(2,:) 
(plane{1,2*f+I+1}(cntr:cntr+length(m)-1,1))']; 
            cntr=cntr+length(m)-1; 
        end 
        [s4,s3]=size(A); 
        beam(n:n+s3-1,:)=[A(1,:)' A(2,:)']; 
        n=n+s3; 
    end 
     
    % Create endpoint connections 
     
    A=[(plane{1,3*f}(1:5,1))'; (plane{1,3*f+1}(1,1))*[1 1 1 1 1]]; 
    beam(n:n+4,:)=[A(1,:)' A(2,:)']; 
    n=n+4; 
    beam=[(1:n)' beam]; 
end %ends if loop which was necessary in the case of f=1 
  
% show 3D plot of geodesic sphere  
% Plot shape 
% tic 
% figure(); 
% for I=1:n 
%     plot3(XYZ(beam(I,2:3),1),XYZ(beam(I,2:3),2),XYZ(beam(I,2:3),3)) 
%  
%     hold on 
% end 
% toc 
  
% Find Triangles Making up Geodesic Sphere 
triangle=[0 0 0]; 
for I=1:nV 
    ind = find(beam(:,2)==I); 
    ind = [ind;find(beam(:,3)==I)]; 
    A=beam(ind,:); 
    points=unique(A(:,2:3)); 
    points(find(points==I))=[]; %remove point of interest from list of 
points 
    for J=1:length(points) 
        ind = find(beam(:,2)==points(J)); 
        ind = [ind;find(beam(:,3)==points(J))]; 
        A=beam(ind,:); 
        points2=unique(A(:,2:3)); 
        points2(find(points2==I))=[]; 
        points2(find(points2==points(J)))=[]; 
        B=zeros(size(points)); 
        for K=1:length(points2) 
            B1=points==points2(K); 
            B=B+B1; 
        end 
        point_vertices=nonzeros(B.*points); 
        triangle=[triangle;I*(ones(size(point_vertices))) 
points(J)*(ones(size(point_vertices))) point_vertices]; 
    end 
end 
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triangle(1,:)=[]; 
for I=1:length(triangle) 
    triangle(I,:)=sort(triangle(I,:)); 
end 
triangle=unique(triangle,'rows'); 
  
for I=1:length(triangle) 
    centroid(I,:)=mean([(XYZ(triangle(I,1),:)); (XYZ(triangle(I,2),:)); 
(XYZ(triangle(I,3),:))]); 
    %calc height of each tetrahedron 
    height(I)=norm(centroid(I,:)); 
    %calc area of each triangular face 
    areat(I)=0.5*norm(cross((XYZ(triangle(I,3),:)-
XYZ(triangle(I,1),:)),(XYZ(triangle(I,3),:)-XYZ(triangle(I,2),:)))); 
end 
 
%calculate volume of each irregular tetrahedron 
volumet=(1/3)*areat.*height; 
%find volume and surface are of total structure 
Volume=sum(volumet); 
Area=sum(areat); 
  
% center point index in xyz matrix 
cp=nt+nV+1; 
  
%calc force vector force=[point mag pt1 pt2] 
force=[0 0 0 0]; 
for I=1:length(triangle) 
    % find vectors for each triangle to determine area 
    v12=0.5*(XYZ(triangle(I,2),:)-XYZ(triangle(I,1),:)); 
    v1c=centroid(I,:)-XYZ(triangle(I,1),:); 
    v13=0.5*(XYZ(triangle(I,3),:)-XYZ(triangle(I,1),:)); 
    v21=0.5*(XYZ(triangle(I,1),:)-XYZ(triangle(I,2),:)); 
    v2c=centroid(I,:)-XYZ(triangle(I,2),:); 
    v23=0.5*(XYZ(triangle(I,3),:)-XYZ(triangle(I,2),:)); 
    v31=0.5*(XYZ(triangle(I,1),:)-XYZ(triangle(I,3),:)); 
    v3c=centroid(I,:)-XYZ(triangle(I,3),:); 
    v32=0.5*(XYZ(triangle(I,2),:)-XYZ(triangle(I,3),:)); 
% Calc force magnitude= Pressure*area where area is 1/2 cross product  
% of vectors (triangle).  Two triangles per irregular quadrilateral.   
% Three quadrilatersals make up the total area of a triangular face    
% with the pressure from each quadrilateral acting as an equivalent    
% force at the closest vertex of the triangular face. Each             
% quadrilateral is defined by four points, one at the vertex of the    
% triangular face, one at the centroid, and the remaining two halfway    
% along each edge of the triangular face that meets the vertex at which 
% the force will act. 
    magn=Pa*.5*[norm(cross(v12,v1c))+norm(cross(v1c,v13)); 
        norm(cross(v21,v2c))+norm(cross(v2c,v23)); 
        norm(cross(v31,v3c))+norm(cross(v3c,v32))]; 
    % magnitude =[point mag pt1 pt2] 
    % [point of force application, magnitude of force, 
    % starting point of force direction, ending point of force 
direction] 
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    % start point is centroid of triangular face, end point is origin 
    force=[force; triangle(I,1) magn(1) nV+I cp; 
        triangle(I,2) magn(2) nV+I cp; 
        triangle(I,3) magn(3) nV+I cp]; 
end 
force(1,:)=[]; 
  
% Find average length of beams 
lcbi=zeros(1,length(beam)); 
for I=1:length(beam) 
    lcbi(I)=norm(XYZ(beam(I,3),:)-XYZ(beam(I,2),:)); 
end 
lcb=mean(lcbi); 
save geometry1.mat Volume Area lcb; 
% Add centroids and origin to xyz matrix 
XYZ=[XYZ;centroid;0 0 0]; 
  
% Add index to xyz matrix 
XYZ=[(1:cp)' XYZ]; 
End 

A.8 Optimization Sub-Routine: .dat File Reader (Datread_beam.m) 

function [model] = Datread_beam(filename) 
%  1stLt Justin Mason and Dr Black’s 2012 Finite Element Class 
%  Simple *.dat file reader with very limited capabilities 
%  Warning - use at your own risk! 
  
%% Open file 
fid = fopen(filename); %Open dat file 
  
%% Initialize Variables 
model.ncrod=0;   % Number of rod element cards 
model.ncbar=0;   % Number of bar element cards 
model.ngrid=0;   % Number of grid point cards 
model.nprod=0;   % Number of rod property cards 
model.npbar=0;   % Number of bar property cards 
model.nmat=0;    % Number of material cards 
model.nspc=0;    % Number of single point constraint cards 
model.nforce=0;  % Number of force cards 
model.ngrdset=0; % Number of gridset cards 
model.grid.ID = sparse(zeros);   
model.grid.CP = sparse(zeros);  
model.grid.X1 = sparse(zeros);   
model.grid.X2 = sparse(zeros); 
model.grid.X3 = sparse(zeros);   
model.grid.dof1 = sparse(zeros); 
model.grid.dofn = sparse(zeros);   
model.crod.EID = sparse(zeros); 
model.crod.PID = sparse(zeros);   
model.crod.G1 = sparse(zeros); 
model.crod.G2 = sparse(zeros); 
model.cbar.EID = sparse(zeros);%Beam Elements 
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model.cbar.PID = sparse(zeros); 
model.cbar.G1 = sparse(zeros); 
model.cbar.G2 = sparse(zeros); 
model.cbar.X1 = sparse(zeros); 
model.cbar.X2 = sparse(zeros); 
model.cbar.X3 = sparse(zeros); 
model.prod.PID = sparse(zeros);   
model.prod.MID = sparse(zeros);   
model.prod.A = sparse(zeros); 
model.pbar.PID = sparse(zeros);%Beam Mat'l Properties 
model.pbar.MID = sparse(zeros); 
model.pbar.A = sparse(zeros); 
model.pbar.I1 = sparse(zeros); 
model.pbar.I2 = sparse(zeros); 
model.pbar.J = sparse(zeros); 
model.pbar.NSM = sparse(zeros); 
model.mat1.MID = sparse(zeros);   
model.mat1.E = sparse(zeros); 
model.mat1.G = sparse(zeros);   
model.mat1.NU = sparse(zeros); 
dofs=6; 
  
%% Read Executive Control 
read_more = true;  % intialize logical var to stop reading dat file 
first = textscan(fid, '%s',1,'delimiter',' '); %read line up to first 
space 
first_string = char(first{1,1}); % Transform cell array to character 
string 
while (read_more)  % While logical read_more is true keep reading 
  switch first_string  % Switch on the first string that is read in 
     
    case {'ID'}  %Read in the ID for the job 
       cell = textscan(fid, '%[^\n]',1); %read the rest of the line 
       model.ID = char(cell{1,1}); %convert to a character string 
  
    case {'SOL'}  %Read in the solution sequence to be executed 
       cell = textscan(fid, '%u',1); %read the rest of the line 
       model.sol = uint32(cell{1,1}); %convert to an integer 
      
    case {'CEND'}  %Exit when done with executive control 
       read_more = false;  %All done reading 
       break   
        
  end 
  first = textscan(fid, '%s',1,'delimiter',' ');  %read line up to the 
first space 
  first_string = char(first{1,1});  % Transform cell array to character 
string 
end 
% disp('Completed reading Executive Control');   %Dump to the screen an 
update 
  
%% Read Case Control 
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read_more = true;  % intialize logical var to stop reading dat file 
first = textscan(fid, '%s',1,'delimiter',' ');  %read line up to the 
first space 
first_string = char(first{1,1});  % Transform cell array to character 
string 
while (read_more)  % While logical read_more is true keep reading 
  switch first_string  % Switch on the first string that is read in 
  
    case {'TITLE'}  %Read in the title 
       cell = textscan(fid, '%[^\n]',1); %read the rest of the line 
       temp = char(cell{1,1}); %convert to a character string 
       model.title = temp(2:length(temp)); %trim off the '=' 
  
    case {'SUBTIT'}  %Read in subtitle 
       cell = textscan(fid, '%[^\n]',1); %read the rest of the line 
       temp = char(cell{1,1});  %convert to a character string 
       model.subtitle = temp(2:length(temp));  %trim off the '=' 
            
    case {'LABEL'}  %Read in the label  
       cell = textscan(fid, '%[^\n]',1); %read the rest of the line 
       temp = char(cell{1,1}); %convert to a character string 
       model.label = temp(2:length(temp)); %trim off the '='    
      
    case {'SPC'}  %Read in the SPC identifier 
       cell = textscan(fid, '%s%u',1); %read the rest of the line 
       model.spc_ID = uint32(cell{1,2}); %convert to an integer 
     
    case {'LOAD'}  %Read in the Load identifier 
       cell = textscan(fid, '%s%u',1); %read the rest of the line 
       model.load_ID = uint32(cell{1,2}); %convert to an integer 
       
    case {'DISP'}  %Read in the Disp 
       cell = textscan(fid, '%[^\n]',1); %read the rest of the line 
       temp = char(cell{1,1}); %convert to a character string 
       model.disp = temp(2:length(temp)); %trim off the '='  
        
    case {'STRESS'}  %Read in the Stress 
       cell = textscan(fid, '%[^\n]',1); %read the rest of the line 
       temp = char(cell{1,1}); %convert to a character string 
       model.stress = temp(2:length(temp)); %trim off the '='  
            
    case {'BEGIN'}  %Exit when done with case control 
       read_more = false;   %All done reading 
       break   
        
  end 
  first = textscan(fid, '%s',1,'delimiter',' ');  % Read line up to the 
first space 
  first_string = char(first{1,1});  % Transform cell array to character 
string 
end 
% disp('Completed reading Case Control');  %Dump to the screen an 
update 
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%% Read Bulk Data 
read_more = true;  % intialize logical var to stop reading dat file 
first = textscan(fid, '%s',1,'delimiter',',');  %read line up to the 
first comma 
first_string = char(first{1,1});  % Transform cell array to character 
string 
while (read_more)  % While logical read_more is true keep reading 
 switch first_string  % Switch on the first string that is read in 
  
    case {'GRID','EGRID'} %Read in a grid card 
       model.ngrid = model.ngrid + 1;  %Increment the number of grid 
points 
       cell = textscan(fid, '%u%u%f%f%f',1,'delimiter',',',... 
             'emptyValue', 0);  %read the rest of the line 
       GN = uint32(cell{1,1});  %Store grid ID  
       model.grid.ID(model.ngrid) = GN; 
       model.grid.CP(GN)          = uint32(cell{1,2});  %Store 
coordinate system  
       model.grid.X1(GN)          = double(cell{1,3});  %Store 1 
coordinate 
       model.grid.X2(GN)          = double(cell{1,4});  %Store 2 
coordinate 
       model.grid.X3(GN)          = double(cell{1,5});  %Store 3 
coordinate 
       model.grid.dof1(GN)        = (model.ngrid-1)*dofs+1; 
       model.grid.dofn(GN)        = (model.ngrid)*dofs; 
     
   case {'CROD'}   
       model.ncrod = model.ncrod + 1; 
       cell = textscan(fid, '%u%u%u%u',1,'delimiter',',',... 
             'emptyValue', 0);  %read the rest of the line 
       EID = uint32(cell{1,1});  
       model.crod.EID(model.ncrod) = EID;  %Store element ID 
       model.crod.PID(EID)         = uint32(cell{1,2}); %Store the 
property ID  
       model.crod.G1(EID)          = uint32(cell{1,3}); %Store grid ID 
1 
       model.crod.G2(EID)          = uint32(cell{1,4}); %Store grid ID 
2 
    
   case {'PROD'}   
       model.nprod = model.nprod + 1; 
       cell = textscan(fid, '%u%u%f',1,'delimiter',',',... 
             'emptyValue', 0);  %read the rest of the line 
       PID = uint32(cell{1,1}); 
       model.prod.PID(model.nprod) = PID;  %Store property ID 
       model.prod.MID(PID) = uint32(cell{1,2});  %Store material ID 
       model.prod.A(PID)   = double(cell{1,3});  %Store cross sectional 
area 
  
   case {'CBAR'}   
       model.ncbar = model.ncbar + 1; 
       cell = textscan(fid, '%u%u%u%u%f%f%f',1,'delimiter',',',... 
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             'emptyValue', 0);  %read the rest of the line 
       EID = uint32(cell{1,1});  
       model.cbar.EID(model.ncbar) = EID;  %Store element ID 
       model.cbar.PID(EID)         = uint32(cell{1,2}); %Store the 
property ID  
       model.cbar.G1(EID)          = uint32(cell{1,3}); %Store grid ID 
1 
       model.cbar.G2(EID)          = uint32(cell{1,4}); %Store grid ID 
2 
       model.cbar.X1(EID)          = double(cell{1,5}); %Store 
component x1 of orientation vector 
       model.cbar.X2(EID)          = double(cell{1,6}); %Store 
component x2 of orientation vector        
       model.cbar.X3(EID)          = double(cell{1,7}); %Store 
component x3 of orientation vector 
       
   case {'PBAR'}   
       model.npbar = model.npbar + 1; 
       cell = textscan(fid, '%u%u%f%f%f%f%f',1,'delimiter',',',... 
             'emptyValue', 0);  %read the rest of the line 
       PID = uint32(cell{1,1}); 
       model.pbar.PID(model.npbar) = PID;  %Store property ID 
       model.pbar.MID(PID) = uint32(cell{1,2});  %Store material ID 
       model.pbar.A(PID)   = double(cell{1,3});  %Store cross sectional 
area 
       model.pbar.I1(PID)   = double(cell{1,4});  %Store 1st moment of 
inertia 
       model.pbar.I2(PID)   = double(cell{1,5});  %Store 2st moment of 
inertia 
       model.pbar.J(PID)   = double(cell{1,6});  %Store polar moment of 
inertia 
       model.pbar.NSM(PID)   = double(cell{1,7});  %Store non-
structural mass        
  
   case {'MAT1'}   
       model.nmat = model.nmat + 1; 
       cell = textscan(fid, '%u%f%f%f',1,'delimiter',',',... 
             'emptyValue', 0); %read the rest of the line 
       MID = uint32(cell{1,1});   
       model.mat1.MID(model.nmat) = MID;  %Store material ID 
       model.mat1.E(MID)          = double(cell{1,2});  %Store Youngs 
modulus 
       model.mat1.G(MID)          = double(cell{1,3});  %Store Shear 
modulus 
       model.mat1.NU(MID)         = double(cell{1,4});  %Store Poissons 
ratio 
    
   case {'SPC1'}   
       model.nspc = model.nspc + 1;  %Increment the number of SPC cards 
       cell = textscan(fid, '%u%s%u',1,'delimiter',',',... 
             'emptyValue', 0); %read the rest of the line  
       model.spc.SID(model.nspc) = uint32(cell{1,1}); %Store SPC ID 
       model.spc.G1(model.nspc)  = uint32(cell{1,3}); %Store node to be 
constrained 
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       model.spc.C{model.nspc}   = char(cell{1,2});   %Store 
constrained components  
    
   case {'FORCE1'}   
       model.nforce = model.nforce + 1;  %Increment the number of 
FORCE1 cards 
       cell = textscan(fid, '%u%u%f%u%u',1,'delimiter',',',... 
             'emptyValue', 0); %read the rest of the line 
       model.force.SID(model.nforce) = uint32(cell{1,1});  %Store 
force1 ID 
       model.force.G(model.nforce)   = uint32(cell{1,2});  %Store node 
ID 
       model.force.F(model.nforce)   = double(cell{1,3});  %Store 
magnitude of force 
       model.force.G1(model.nforce)  = uint32(cell{1,4});  %Store 
begining node ID for vector 
       model.force.G2(model.nforce)  = uint32(cell{1,5});  %Store 
ending node for ID    
    
   case {'GRDSET'}   
       model.ngrdset = model.ngrdset + 1;  %Increment the number of 
GRDSET cards 
       cell = textscan(fid, '%u%u%u%u%u%u%s',1,'delimiter',',',... 
             'emptyValue', 0); %read the rest of the line   
       model.grdset.CP = uint32(cell{1,2});  %Coordinate system for 
grid points 
       model.grdset.CD = uint32(cell{1,6});  %Coordinate system for 
displacements 
       model.grdset.PS = char(cell{1,7}); 
  
    case 'ENDDATA'  %Exit when done with data 
       read_more = false;   %All done reading 
       break   
        
  end 
  first = textscan(fid, '%s',1,'delimiter',',');  %read line up to the 
first comma 
  first_string = char(first{1,1});  % Transform cell array to character 
string  
end 
% disp('Completed reading Bulk Data');  %Dump to the screen an update 
fclose(fid); %Open dat file 
end 

A.9  Von Karman Efficiency for Rotating Cylinder (LTAheliumcylinder.m) 

% LTAheliumcylinder 
% Capt Trent Metlen 
clc; close all; clear all; 
global P rho ro mfact L I E Vs Ms sm d J 
 
%*************************atmosphere*********************************** 
rho=0.889; % kg/m^3, density of air at 10k feet 
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P=1500*70; %Pa, Pressure and 1.5 safety factor  
mu=1.68*10^-5; %dynamic viscosity of air  
%**********************************************************************
v=.3; % Poisson’s ratio 
sm=5.67*10^9;%Pa tensile strength of Hextow 1m7 
E=2.76*10^11;%2.76*10^11;%modulus of Hextow 1m7 *10^11  
Ec=1.2*10^10; %transverse modulus elasticity of UHM carbon fiber 
ss=128*10^6; %shear strength of AS4 hextow fiber 
dhe=0.056; %kg/m^3 density of helium at 10k ft  
da=rho-dhe;%density of air – density of helium 
d=1522.3945;%density of AS4/3501-6 
Vc=0; 
mc=0; 
K=1; 
syms cdi 
options = optimset('Display','off');  % Turn off display  
options2=optimset('Display','off','Algorithm','trust-region-
reflective');  % Turn off display  
mub=.0011; %bearing friction coefficient Ref 5 
db=.15;%bearing inner diameter (m) Ref 6 
to=.0045; 
for J=1:20 
     ro=8;%m, radius  
     u=10*J;% m/s,tip speed of cylinder  
     Re=rho*u.*ro/mu; %reynolds number for cylinder in free flow  
     for counter=1:length(Re) 
         Re1=Re(counter); 
         F=solve(10^((1/(cdi^.5)+.6)/4.07)-Re1*cdi^.5); %find cd 
         cd(counter)=double(F); %convert symbolic to numeric 
     end     
     L=ro*[1:1:10];%m, length of cylinder  
      As=4*pi*ro^2;%m^2, area of spherical endcaps 
     for I=1:length(L) %find required thickness and mass for each L and 
R 
         eta=ro/to; 
         Kc=0.4233+79.9779*eta^-1-12759.6621*eta^-2+755633.25*eta^-3; 
         z=L(I)^2*sqrt(1-v^2)/(ro*to); 
         Ac(I)=L(I)*2*pi*(ro);%m^2, surface area of cylinder 
         M=0.5*rho*ro*Ac(I)*cd*(u.^2); % Nm, moment  
         t(I)=(M*z^(1/4)/(2*pi*ro*Kc*E))^.5;%m, required thickness of 
%cylinder shell due to torque 
         to=t(I); 
         tl=M/(2*pi*ro^2*ss);  %thickness required due to shear stress 
         if tl>to %check local buckling condition, is ultimate strength 
%greater than local stress? 
             t(I)=tl; 
         end 
            ts(I)=M./(2*pi*((.15+ro)/2)^2*ss);%m, thickness of 
spherical endcaps 
            Ms(I)=As*ts(I)*d;%kg, mass of sphere 
            Vs(I)=4/3*pi*ro^3;%m^3, volume of sphere 
         mc(I)=d*Ac(I)*t(I)+Ms(I);%kg, mass of cylinder with spherical 
%endcaps 
         Vc(I)=L(I)*pi*(ro)^2+Vs(I);%m^3, volume of cylinder with 
%spherical endcaps 
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         Lr(I)=L(I)/(ro);%Length/radius of cylinder 
     end 
       
     wc=mc*9.8; %N, weight of spherical endcaps 
     wac=Vc*da*9.8; %N, buoyant force  
     Lift=wac-wc; %N, lift force of cylinder 
     fb=.5.*(Lift); %N, bearing load weight of 1/2 payload 
     Cm=.146./(Re.^.2); %Moment Coefficient 
         Pb=0.5*mub*db*(u./ro).*fb; %watts, power required due to 
bearing friction  
         w=u/ro; 
   Ps=1/2*Cm.*rho.*u.^3.*ro.^2; %watts, power required to rotate 
disks (ends of cylinders) 
    Pr=w.*M %watts, power required to rotate cylinder 
         Px=0.75*Pr+Ps+Pb; Ref 1 75% power requirement 
         U=u/2.5; %m/s, forward velocity omegacrit=2.5 gap size=2*r   
         evk=Px./(U*Lift); %von Karman efficiency 
         [Evk(J),ind]=min(evk(find(evk>0))); %find minimum evk assuming 
no engine weight (so that minimization happens even if vehicle is 
infeasible) 
         [~,ind]=find(evk==Evk(J)) 
         Acm(J)=Ac(ind); 
         rm(J)=Lr(ind); %length/radius at optimal evk 
         tm(J)=t(ind); %thickness at optimal evk 
         rom(J)=ro; %radius 
         wci(J)=wc(ind); %weight of cylinder at optimal evk 
         waci(J)=wac(ind); %buoyancy of cylinder at optimal evk 
         omega=w; %rotational velocity required for equilibrium 
         Vtip(J)=u; %tip speed of cylinder in m/s 
         power(J)=Px(ind); %power required to spin cylinder NM/s 
         Ux(J)=U; 
 end 
 volc=2*pi*(ro^3).*rm; %(m^3) volume of two cylinders used to compare 
to conventional airship 
  
 Lift=waci-wci; %lbs buoyancy-weight 
 Lm=wci./waci;  
 zeta=43.15*10^6; %(Nm/kg) energy density of fuel 
 
%calculate C27 evk 
 fuel=4000; %kg of fuel used by C-27J to go 4074 km 
 dist=4459616; %distance traveled (m) 
 velocity=150; %m/s cruise speed of C-27J 
 c27=fuel*zeta*velocity/dist; 
 ec27=c27/(10000*9.8*velocity); 
 
 x=0:max(rom); 
  rc=6; %ft radius of cylindrical gondola cabin 
 lc=60; %ft length of gondola cabin 
 vc=pi*rc^2*lc*0.0283168466 ; %volume of gondola m^3 
 mc=11*vc; %mass of gondola (kg) based on 11 kg/m^3 Ref 11 
 mb=26*4; %mass of bearings (kg) Ref A 6 
  
 figure() 
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 lambda=2.5; %fineness ratio 
 Vol=volc(5); 
 r=((3/4)*Vol/(pi*lambda))^(1/3); 
 rho10=.406; %(kg/m^3) Ref 2 
 Dc=.5*rho*Ux.^2.*pi*rc^2*0.012; %Drag of cabin Cd=.012 Ref 12 
 b=Vol*.85*da*9.8; %(N) buoyancy volume of lifting gas is .85 of total 
airship volume 
 CD=.0169 %CD of BLC airship Ref 3 .0162 +.0007 for tail surfaces 
 U=(1/1.9438)*[10:10:350]; %m/s, velocity  
 k=1/.855; %.59 is propeller efficiency with 45% improvement 
 Ap=pi*(r/4.64)^2; % m^2, propeller area (propeller radius= max 
radius/4.64)  
 range=1852000; % m 
 zeta=43.15*10^6; %Nm/kg, energy density of Jet A 
 Px=(k*Dc.^2./(2*rho*Ap*Ux)); %Power required to overcome cabin drag 
 Lx=2*Lift-(2*1.5*9.8*(power+Px)).*0.00134-
2*9.8*range./Ux.*(power+Px).*3/zeta ; %N, Useful Load of rotating 
cylinder LTA vehicle 1.5 kg/hp Ref 6 
 ex=3*power./(Ux.*Lx); %Von Karman Efficiency of rotating cylinder LTA 
%vehicle assuming 33 percent efficient engines 
 for I=1:length(U) 
     t(I)=range/U(I); %time enroute 
     D(I)=.5*rho10*U(I)^2*Vol^(2/3)*CD; %(N) Drag 
     P(I)=k*sqrt(D(I)^3/(2*rho*Ap)); %Power required 
     L(I)=b*.7-(1.7*9.8*P(I))*0.00134-9.8*t(I)*P(I)*3/zeta ; %(N) 
useful load assuming 30% structure to useful load ratio and 1.7 kg/hp 
engine and ducted fan weight as well as 33% engine efficiency and 
energy density of Jet A   
     e(I)=3*P(I)/(U(I)*L(I)); %Von Karman efficiency at each velocity 
assuming 33 percent efficient engines 
 end 
  
%von Karman efficiency of zeppelin NT 
 eznt=147000/(1900*9.8*34); 
 
%Gabrielli von Karman limit 
 A=.000175; 
 V=1:10:1010; %mph 
 effk=A*V; 
  
% Plot von Karman efficiency graph 
loglog(V*0.869,effk,U*1.944,e,Ux*1.944,ex,'k',velocity*1.944,ec27,'b*',
34*1.944,eznt,'r.') %mph*.869=knots m/s*1.944=knots 
 text(velocity*1.6,ec27*1.5,'C-27') 
 hold on 
 data3=[ 1/3.9 22.4; 1/.42 75.8; 1/.21 8.9; 1/.4 15.6; 1/.62 7.5; 
1/36.68 26.8; 1/1.86 29.5; 1/2.54 290.5; 1/320 8.9; 1/21 24.6];%Ref 1 
 eff=data3(:,1)./(data3(:,2)*2.237) ; 
 scatter(data3(:,2)*1.944,data3(:,1),'.') %m/s*1.944=knots 
 text(1.1*Ux(10)*1.944,ex(10),'Rotating Cyl') 
 text(1.1*0.8*U(length(U))*1.944,0.8*e(length(U)),'BLC Airship') 
 text(34*1.6,eznt*1.5,'Zeppelin NT') 
 text(data3(1,2)/1.5,data3(1,1),'Motorcycle') 
 text(data3(2,2)/1.2,data3(2,1),'N99VE') 
 text(data3(3,2)/3,data3(3,1),'Automobile in City') 
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 text(data3(4,2)/3,data3(4,1),'Commuter Train') 
 text(data3(5,2),data3(5,1),'Bus') 
 text(data3(6,2)/2,data3(6,1) ,'Freight Train') 
 text(data3(7,2)/2,data3(7,1),'Airship 1936') 
 text(data3(8,2)*1.6,data3(8,1)*1.5,'747') 
 text(data3(9,2)/1.5 ,data3(9,1),'Tanker') 
 text(data3(10,2),data3(10,1),'Truck') 
 
xlabel({'Velocity (knots)'},'fontsize',14); 
 ylabel({'Von Karman Efficiency'},'fontsize',14); 
 legend('Von Karman Limit','BLC Airship','Rotating Cylinder LTA 
Vehicle','Location','Best') 
axis([1 1000 10^-4 10]) 

A.10  Optimization of Isogrid Stiffened Sphere (LTAsphere.m) 

%LTAsphere 
%Capt Metlen  
clc; clear all; close all; 
     
global t r v sc E P rs 
 
% atmospheric properties 
da=1.225; %kg/m^3, density of air at sea level  
P=1500*101.325 %Pa, air pressure sea level and 
  
% properties of skin 
% Dupont E-130-x 
E=.5*895e9; %Pa, Young’s modulus of elasticity 
v=0.3; % Poisson’s ratio 
sc=1786e6; %Pa, compressive strength 
s=3445e6; %Pa, tensile strength 
dens=1522; %kg/m^3, density 
  
r=0.33; %m, radius of sphere 
ti=linspace(.000001,0.0001,100); %m, thickness of skin 
xo=[0.013 0.0001 0.0004]; %initial guess xo=[d b h] 
for I=1:length(ti) 
t=ti(I); 
x(I,:) = fsolve(@LTAspheref,xo, optimset('Display','off')); %solve for 
[d b h] at each thickness 
xo=x(I,:); 
end 
 
d=abs(x(:,1))'; 
b=abs(x(:,2))'; 
h=abs(x(:,3))'; 
  
a=2*h/sqrt(3); %m, triangle leg length 
te=ti+3*d.*b./h; %m, smeared thickness 
tes=ti+d.*b./h;  
scrit=P*r./(2*te); %stress in cross section due to uniform external 
pressure 
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te=te-te.*(scrit>sc)+(scrit>sc).*P*r./(2*sc); %make sure material 
compressive strength not exceeded. If stress is greater than material 
compressive strength then thickness is defined by material compressive 
strength, otherwise it is defined by buckling of sphere 
  
alpha=b.*d./(ti.*h); 
del=d./ti; 
beta=(3*alpha.*(ones(size(del))+del).^2+(ones(size(alpha))+alpha).*(one
s(size(alpha))+alpha.*del.^2)).^.5; 
ts=ti.*beta./(ones(size(alpha))+alpha); % m, equivalent thickness 
Es=E*((ones(size(alpha))+alpha).^2)./beta; % Pa, equivalent stiffness 
 
tsmooth=r*sqrt(P*sqrt(1-v^2)/(.8*E)); % m, thickness required of 
unstiffened sphere 
scrits=P*r./(2*tsmooth); %stress in unstiffened sphere 
tsmooth=tsmooth-tsmooth*(scrits>sc)+(scrits>sc).*P*r./(2*sc) %make sure 
material compressive strength not exceeded 
A=4*pi.*r^2;% (m^2) area of sphere 
V=4/3*pi*(r+.5*te).^3;% m^3, volume of air displaced by sphere 
W=A*te*dens*9.8; % N, Weight of skin 
bo=9.8*V*da; % N, buoyant force 
Mb=W./bo; %weight to buoyancy ratio 
L=(bo-W); %(N) Lift 
Wsmooth=A*tsmooth*dens*9.8; % N, Weight of skin 
Mbsmooth=(Wsmooth./bo); %weight to buoyancy ratio of unstiffened sphere 
beam=min(find(a./d>5));  
 
figure(); 
plot(ti,Mb,ti(beam:end),Mb(beam:end),'r',ti,Mbsmooth); 
xlabel('Skin Thickness, meters'); ylabel('W/B') 
%title('Weight to Buoyancy Ratio of Be Blade Stiffened Sphere') 
legend('Grid Stiffened Sphere','Unstiffened Sphere','Location','Best') 
%axis([ti(1) ti(length(ti)) min(Mb)*.8 max(Mb)]) 
 
function F = LTAspheref(x) 
global t r v sc E P 
d=abs(x(1)); %blade depth 
b=abs(x(2)); %blade width 
h=abs(x(3)); %triangle height 
a=2*h/sqrt(3); %triangle leg length 
te=t+3*d*b/h; %smeared thickness 
tes=t+d*b/h; 
scrit=P*r/(2*te); %stress in cross section due to uniform external 
pressure 
 
alpha=b*d/(t*h); 
del=d/t; 
beta=(3*alpha*(1+del)^2+(1+alpha)*(1+alpha*del^2))^.5; 
ts=t*beta/(1+alpha); 
Es=E*((1+alpha)^2)/beta; 
  
if (a/d)>5 % solve buckling of beam for rib buckling 
F=[scrit-(pi^2)*E*(b^2)/(12*a^2);P-0.8*Es*ts^2/((r^2)*sqrt(1-
v^2));scrit-5*(pi^2)*E*((t/a)^2)/(12*(1-v^2))]; 
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Else % solve buckling of plate for rib buckling 
       F=[scrit-0.456*(pi^2)*E*(b^2)/(12*(d^2)*(1-v^2));P-
0.8*Es*(ts^2)/((r^2)*sqrt(1-v^2)); scrit-5*(pi^2)*E*((t/a)^2)/(12*(1-
v^2))]; 
end  

A.11  Partial Vacuum Study (LTAspherepv.m) 

%Capt Metlen 
%LTAspherepv  
clc; clear; close all; 
  
ni=logspace(0,3,1000); 
E=0.0795*450*10^9; %0.0795 from LTAsphere gives E* at optimal stiffener 
setting 
patm=1.5*1.01325*10^5; %1 bar = 10^5 Pa (N/m2) 
mu=.3; %Poisson's ratio 
r=1; %m radius of sphere 
rhos=1522; %kg/m^3 density of surface of sphere 
rhoair=1.225; %kg/m^3 density of air at sea level 
for I=1:length(ni) 
    n=ni(I); 
t=sqrt((r^2)*(patm-patm/n)*sqrt(1-mu^2)/(0.8*E)); %m thickness of 
sphere based on E* gives t* 
ts=t*0.1128; %from LTAsphere gives tsmeared value vs t* 
mb(I)=(rhos*ts*4*pi*r^2+((4/3)*pi*(r-
.5*ts)^3)*rhoair/n)/((4/3)*pi*((r+.5*ts)^3)*rhoair); %mass/buoyancy 
ratio 
  
end 
figure() 
plot(1./ni,mb,1./ni,ones(size(ni))*1,'k:') 
xlabel('Fraction of Sea Level Pressure Inside Sphere') 
ylabel('W/B') 
% title('Effect of Decreasing Internal Pressure') 
  
%% 
%M=[pressure/sea level pressure, density/sea level density, elevation 
(m)] 
M=[1    1       0 
0.94211695      0.9529  500 
0.887046632     0.9075  1000 
0.834542314     0.8638  1500 
0.784603997     0.8217  2000 
0.737132988     0.7812  2500 
0.692030595     0.7423  3000 
0.649198125     0.7048  3500 
0.608536886     0.6689  4000 
0.569948187     0.6343  4500 
0.533432026     0.6012  5000 
0.498791019     0.5694  5500 
0.466025167     0.5389  6000 
0.435035776     0.5096  6500 
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0.405724155     0.4817  7000 
0.377991611     0.4549  7500 
0.351838145     0.4292  8000 
0.327165063     0.4047  8500 
0.303972366     0.3813  9000 
0.28206267      0.3589  9500 
0.261534666     0.3376  10000 
0.24219097      0.3172  10500 
0.224031582     0.2978  11000 
0.207056501     0.2755  11500 
0.191463114     0.2546  12000 
0.176955342     0.2354  12500 
0.163631878     0.2176  13000 
0.151295337     0.2012  13500 
0.139847027     0.186   14000 
0.129286948     0.172   14500 
0.119516408     0.159   15000 
0.110535406     0.147   15500 
0.102146558     0.1359  16000 
0.094468295     0.1256  16500 
0.087342709     0.1162  17000 
0.080750062     0.1074  17500 
0.074660745     0.0993  18000 
0.069035283     0.09182 18500 
0.063824328     0.08489 19000 
0.059018011     0.0785  19500 
0.054566987     0.07258 20000 
0.039940785     0.05266 22000 
0.029331359     0.03832 24000 
0.021593881     0.02797 26000 
0.01594868      0.02047 28000 
0.011813472     0.01503 30000]; 
for I=1:length(M(:,1)) 
t3=sqrt((r^2)*(patm*M(I,1))*sqrt(1-mu^2)/(0.8*E)); 
t3s=t3*0.1128; %from LTAsphere gives tsmeared value vs t* 
t2(I)=t3s; 
mb2(I)=(rhos*t2(1)*4*pi*r^2)/((4/3)*pi*(r^3)*rhoair*M(I,2)); 
mb3(I)=(rhos*t3s*4*pi*r^2)/((4/3)*pi*(r^3)*rhoair*M(I,2)); 
end 
figure() 
plot(M(1:4,3)*3.28084,mb3(1:4),M(1:4,3)*3.28084,mb2(1:4),M(1:4,3)*3.280
84,ones(4,1)*1,'k:') 
xlabel('Pressure Altitude, ft') 
ylabel('W/B') 
% title('Effect of Increasing Designed Deployment Elevation') 
legend('Designed For Specific Altitude','Designed for Sea Level 
Pressure') 

A.12  Altitude Effect on W/B (LTAspherealt.m) 

%Capt Metlen LTAspherealt 
clc; clear all; close all; 
  
% properties of air 
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da=1.225; %kg/m^3, density of air at sea level  
  
%M=[pressure/sea level pressure, density/sea level density, elevation 
(m)] 
M=[same as Appendix A.11]; 
diameter=6.5; 
 index=find(ro*2>diameter);index=index(1); 
 diameter=ro(index)*2; 
 mb=[0.9 0.8 0.5 0.25 0.09]; 
 for I=1:5 
Mb(:,I)=mb(I)*b(index)./(4/3*pi*(diameter/2)^3*M(:,2)*rho); 
 end 
figure() 
plot(M(1:end,3)*3.28084,Mb(1:end,1),M(1:end,3)*3.28084,Mb(1:end,2),M(1:
end,3)*3.28084,Mb(1:end,3),M(1:end,3)*3.28084,Mb(1:end,4),M(1:end,3)*3.
28084,Mb(1:end,5)) %*3.28084 to convert to feet 
hold on 
[x,y]=meshgrid(0:1000:65000,0.05:0.1:1.4); 
cv = [0 0]; 
[cont,h] = contourf(x,y,y-1,cv); 
% Set the figure Renderer to OpenGL, which supports transparency 
set(gcf, 'Renderer', 'OpenGL'); 
% Find all the objects that are children of the contourgroup that have 
the FaceAlpha property 
a1 = findobj(h, '-property', 'FaceAlpha'); 
k = .3; 
% Change the FaceAlpha property, which will change the 
objects'transparency 
set(a1, 'FaceAlpha', k,'FaceColor',[0 0 1]);%red 
  
title('Effect of Altitude on Weight/Buoyancy Ratio') 
xlabel('Density Altitude, ft') 
ylabel('Weight/Buoyancy Ratio') 
legend('W/B=0.9','W/B=0.8','W/B=0.5','W/B=0.25','W/B=0.09','Location','
NorthEastOutside') 
axis([0,65000,0.05,1.2]) 

A.13  Optimization of Isogrid (LTAisogrid_opt.m) 

%Capt Metlen LTAisogrid_opt 
clc; clear all; close all; 
  
%% Optimization 
  
% variables x=[h t b d] 
% Set your upper and lower bounds 
r=.33; % m, radius of sphere 
scaling = [1e-003  1e-005  1e-005  1e-003]; 
ub=[1e-1 1e-2 1e-2 1e-1]./scaling; 
lb=[1e-5 1e-7 1e-7 1e-5]./scaling; 
  
  
% Set your initial guess 
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xo=[ 1.4296e-003  3.2317e-005  1.4625e-005  1.2734e-003]./scaling; 
  
% Atmospheric conditions 
rho_air=1.225; % kg/m^3, density of air  
P_atm=1500*101.325;% Pa, pressure air 
  
% Material Properties 
E=895*10^9; % Pa, skin stiffness UHM carbon fiber 
v=0.3; % Poisson's ratio 
sc=1786e6; % Pa, compressive strength epoxy 
Em=3.5*10^9; % Pa, stiffness epoxy 
thetai=0:pi/50:pi; % fiber orientation angles 
rho_skin=1522; % kg/m^3, skin density 
  
% calculate angle and Ex of each ply add together to get composite Ex 
(Ec) 
for I=1:length(thetai) 
theta=thetai(I); 
theta1=theta+pi/2; %90 degrees 
theta2=theta+pi/4; % 45 degrees 
theta3=theta+3*pi/4; %-45 degrees 
Ec(I)=0.6*(.25*(cos(theta))^4+.25*(cos(theta1))^4+.25*(cos(theta2))^4+.
25*(cos(theta3))^4)*E+.4*Em; 
end 
E=E*.6+Em*.4; 
Eiso=min(Ec); %min fiber stiffness angle for quasi-isotropic [90/+-
45/0]s  
  
%% fmincon Optimization 
% This section runs a fmincon optimization routine 
  
constants=[r,rho_air,P_atm,E,Eiso,rho_skin,sc,v]; 
options=optimset('algorithm','interior-point','display','iter'); 
[x,fval] =  fmincon(@(x) 
LTAisogrid_cost(x,constants,scaling),xo,[],[],[],[],lb,ub,@(x) 
LTAisogrid_constraints(x,constants,scaling),options); 
  
x=x.*scaling 
f=2*1.05*.33/(sqrt(3)*x(1)) %calculate geometric frequency 
f=round(f) 
% Basic information on geodesic shape 
nV=10*f^2+2 %number of vertices 
nt=20*f^2  %number of triangles 
ne=30*f^2 %number of edges 
 

A.14  Optimization of Isogrid Sub-Routine:  (LTAisogrid_constraints.m) 

% Capt Metlen 
function [ c,ceq ] = LTAisogrid_constraints(x,constants,scaling) 
x=x.*scaling; 
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%x=[h t b d] 
%constants=[r,rho_air,P_atm,E,Eiso,rho_skin,sc,v]; 
h=x(1); 
t=x(2); 
b=x(3); 
d=x(4); 
a=2*h/sqrt(3); 
t_bar=t+3*b*d/h; 
  
r=constants(1); 
P_atm=constants(3); 
E=constants(4); 
Eiso=constants(5); 
sc=constants(7); 
v=constants(8); 
bs=(E/Eiso)*b; 
  
alpha=bs*d/(t*h); 
del=d/t; 
beta=(3*alpha*(1+del)^2+(1+alpha)*(1+alpha*del^2))^.5; 
ts=t*beta/(1+alpha); 
Es=Eiso*((1+alpha)^2)/beta; 
  
sigma=P_atm*r/(2*t_bar); %stress in skin and ribs 
sc_rib=0.456*(pi^2)*E*((b/d)^2)/(1-v^2); %rib buckling pressure 
sc_skin=(5/12)*(pi^2)*Eiso*((t/a)^2)/(1-v^2); %skin crippling pressure 
P_crit=0.8*Es*((ts/r)^2)/sqrt(1-v^2); % global sphere buckling 
  
%constraints 
g1=sigma-sc; 
g2=sigma-sc_rib; 
g3=sigma-sc_skin; 
g4=P_atm-P_crit; 
  
c = [g1;g2;g3;g4]; 
ceq = []; 
end 

A.15  Optimization of Isogrid Sub-Routine:  (LTAisogrid_cost.m) 

% Capt Metlen 
function [ cost ] = LTAisogrid_cost( x,constants,scaling) 
x=x.*scaling; 
%x=[h t b d] 
%constants=[r,rho_air,P,E,Eiso,rho_skin,sc,v]; 
h=x(1); 
t=x(2); 
b=x(3); 
d=x(4); 
r=constants(1); 
rho_air=constants(2); 
rho_skin=constants(6); 
a_s=4*pi*r^2; % m^2, surface area of sphere 
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v_s=(4/3)*pi*r^3; % m^3, volume of sphere 
t_bar=t+3*b*d/h; 
cost = rho_skin*t_bar*a_s/(rho_air*v_s); %W/B of sphere 
end 
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